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MAP [-1402

Type of
map
projection

Cylinders

Cones

Pseudo-Cylinders

Miscellaneous

Mercator

Oblique Mercator

Transverse Mercator

Modified
Transverse
Mercator

Equidistant Conic
(or Simple Conic)

Lambert Conformal Conic

Albers Conic Equal-Area

American Polyconic

Bipolar Oblique
Conic Conformal

Bipolar Oblique
Conic Conformal

Sinusoidal

Eckert No. 6

Van Der Grinten

Conformal

Equidistant

Conformal

Equal Area

Conformal

Conformal

Equal Area

Equal Area

Compromise

Lines of
longitude
(meridians)

Meridians are straight and parallel.

Meridians are complex curves concave
toward the line of tangency, except each
180th meridian is straight.

Meridians are complex curves concave
toward a straight central meridian that is
tangentto the globe. The straight central
meridian intersects the equator and one
meridian at a 90° angle.

On pre-1973 editions of the Alaska Map E,

meridians are curved concave toward the
center of the projection. On post-1973
editions the meridians are straight.

Meridians are straight lines converging on
a polar axis but not at the pole.

Meridians are straight lines converging at a pole.

Meridians are straight lines converging on the polar axis, but not at
the pole.

Meridians are complex curves concave
toward a straight central meridian.

Meridians are complex curves concave
toward the center of the projection.

Meridians are complex curves concave
toward the center of the projection.

Meridians are sinusoidal curves, curved
concave toward a straight central
meridian.

Meridians are sinusoidal curves concave
toward a straight central meridian.

Meridians are circular arcs concave toward
a straight central meridian.

Lines of
latitude
(parallels)

Latitude lines are straight and parallel.

Parallels are complex curves concave
toward the nearest pole.

Parallels are complex curves concave
toward the nearest pole; the equator is
straight.

Parallels are arcs concave to the pole.

Parallels are arcs of concentric circles
concave toward a pole.

Parallels are arcs of concentric circles concave toward a pole and
centered at the pole.

Parallels are arcs of concentric circles concave toward a pole.

Parallels are nonconcentric circles except
for a straight equator.

Parallels are complex curves concave
toward the nearest pole.

Parallels are complex curves concave
toward the nearest pole.

All parallels are straight, parallel lines.

All parallels are straight, parallel lines.

Parallels are circular arcs concave toward
the poles except for a straight equator.

Meridian spacing is equal, and the parallel
spacing increases away from the
equator. The graticule spacing retains the
property of conformality. The graticule is

Graticule spacing increases away from
the line of tangency and retains the
property of conformality.

Parallels are spaced at their true distances
on the straight central meridian.
Graticule gpacing increases away from
the tangent meridian. The graticule
retains the property of conformality.

Meridian spacing is approximately equal

and decreases toward the pole. Parallels
are approximately equally spaced. The
graticule is symmetrical on post-1973
editions of the Alaska Map E.

Meridian spacing is true on the standard
parallels and decreases toward the pole.
Parallels are spaced at true scale along
the meridians. Meridians and parallels
intersect each other at right angles. The
graticule is symmetrical.

Meridian spacing is true on the standard parallels and decreases
toward the pole. Parallel spacing increases away from the
standard parallels and decreases between them. Meridians and
parallelsintersect each other at right angles. The graticule spacing
retains the property of conformality. The graticule is symmetrical.

Meridian spacing is equal on the standard parallels and decreases
toward the poles. Parallel spacing decreases away from the
standard parallels and increases between them. Meridians and
parallelsintersect each other at right angles. The graticule spacing
preserves the property of equivalence of area. The graticule is
symmetrical.

Meridian spacing is equal and decreases
toward the poles. Parallels are spaced
true to scale on the central meridian, and
the spacing increases toward the east
and west borders. The graticule spacing
results in a compromise of all properties.

Graticule spacing increases away from the
lines of true scale and retains the
property of conformality.

Graticule spacing increases away from the
lines of true scale and retains the
property of conformality.

Meridian spacing is equal and decreases
toward the poles. Parallel spacing is
equal. The graticule spacing retains the
property of equivalence of area.

Meridian and parallel spacing decreases
toward the poles. The graticule spacing
retains the property of equivalence of
area.

Meridian spacing is equal at the equator.
The parallels are spaced farther apart
toward the poles. Central meridian and
equator are straight lines. The poles
commonly are not represented. The
graticule spacing results in a
compromise of all properties.

Linear scale is true along the line of
tangency, or along two lines equidistant
from and parallel to the line of tangency.

Linear scale is more nearly correct along

the meridians than along the parallels.

Linear scale is true along all meridians and
along the standard parallel or parallels.

Linearscaleistrue onstandard parallels. Maximum scale erroris 2%,
percent on a map of the United States (48 states) with standard
parallels at 33° N. and 45 ° N.

Linearscaleistrue on the standard parallels. Maximum scale error is
1% percent on a map of the United States (48 states) with standard
parallels of 29%:° N. and 45%° N.

Linear scale is true along each parallel and
along the central meridian. Maximum
scale error is 7 percent on a map of the
United States (48 states).

Linear scaleis true along two lines that do
not lie along any meridian o parallel.
Scale is compressed between these lines
and expanded beyond them. Linear scale
is generally good, but there is as much as
a 10 percent error at the edge of the
projection as used.

Linear scaleis true along two lines that do
not lie along any meridian or parallel.
Scale is compressed between these lines
and expanded beyond them. Linear scale
is generally good, but there is as much as
a 10 percent error at the edge of the
projection as used.

Linear scale is true on the parallels and the
central meridian.

Linear scale is true along parallel 49° 16’
north and south of the equator.

Linearscaleis true along the equator. Scale
increases rapidly toward the poles.

Projection is mathematically based on a
cylinder tangent to a meridian. Shape is
true only within any small area. Areal
enlargment increases away from the
tangent meridian. Reasonably accurate
projection within a 15° band along the
line of tangency. Cannot be edge-joined
in an east-west direction ifeach sheet has
its own central meridian.

The Alaska Map E was adapted from a set of

transverse Mercator projections 8° wide
and approximately 18° long, repeated
east and west of an arbitrary point of
origin until a projection 72° wide was
obtained. The post-1973 editions of the
Alaska Map E more nearly approximate
an equidistant conic map projection.

Projection is mathematically based on a
cone that is tangent at one parallel or
conceptually secant at two parallels.
North or South Pole is represented by an
arc.

Projection is mathematically based on a cone that is tangent at one
parallel or (more often) that is conceptually secant on two
parallels. Areal distortion is minimal but increases away from the
standard parallels. North or South Pole is represented by a point;
the other pole cannot be shown. Great circle lines are
approximately straight. Retains its properties at various scales;
sheets can be joined along their edges.

Projection is mathematically based on a cone that is conceptually
secanton two parallels. No areal deformation. North or South Pole
is represented by an arc. Retains its properties at various scales;
individual sheets can be joined along their edges.

Projection is mathematically based on an
infinite number of cones tangent to an
infinite number of parallels. Distortion
increases away from the central
meridian. Has both areal and angular
deformation.

Projection is mathematically based on two
cones whose apexes are 104° apart, and
which conceptually are obliquely secant
to the sphere along lines following the
trend of North and South America.

Projection is mathematically based on two
cones whose apexes are 104° apart, and
which conceptually are obliquely secant
to the sphere along lines following the
trend of North and South America.

Projection is mathematically based on a
cylinder tangent on the equator. The
sinusoidal projection may have several
central meridians and may be interrupted
on any meridian to help reduce distortion
at high latitudes. There is no angular
deformation along the central meridian
and the equator.

Projection is mathematically based on a
cylinder tangent at the equator. Poles are
represented by straight lines half the
length of the equator. Distortion of shape
is extreme at high latitudes.

The projection has both areal and angular
deformation. It was conceived as a
compromise between the Mercator and
the Mollweide, which shows the world in
an ellipse. The Van der Grinten shows the
world in a circle.

Used where the north-south dimension is
greater thanthe east-west dimension.
Used as the base for the U.S. Geological
Survey’s 1:250,000-scale series and for
some of the 7%-minute and 15-minute
quadrangles of the National Topographic
Map Series.

Grat"_:““e symmetrical. Meridians and parallels
spacing intersect at right angles.

Linear scale is true along the equator only Linear scale is true along the line of
(line of tangency), or along two parallels tangency, or along two lines equidistant
equidistant from the equator (the secant from and parallel to the line of tangency.

Linear form). Scale can be determined by

I measuring one degree of latitude, which

scaie equals 60 nautical miles, 69 statute miles,
or 111 kilometers.

Projection can be thought of as being Projection is mathematically based on a
mathematically based on a cylinder cylinder tangent along any great circle
tangent at the equator. Any straight line other than the equator or a meridian.
is a constant-azimuth (rhumb) line. Areal Shape is true only within any small area.
enlargement is extreme away from the Areal enlargement increases away from
equator; poles cannot be represented. the line of tangency. Reasonably

Notes Shape is true only within any small area. accurate projection within a 15° band
Reasonably accurate projection within a along the line of tangency.
15° band along the line of tangency.

An excellent projection for equatorial Useful for plotting linear configurations
regions. Otherwise the Mercator is a that are situated along a line oblique to
special-purpose map best suited for the earth’s equator. Examples are: NASA
navigation. Secant constructions are Surveyor Satellite tracking charts, ERTS
used for large-scale coastal charts. The flightindexes, strip charts for navigation,
use of the Mercator map projection as the and the National Geographic Society’s

Uses base for nautical charts is universal. maps “West Indies”, “Countries of the
Examples are the charts published by the Caribbean’, ‘‘Hawaii’’, and ‘New
National Ocean Survey, U.S. Dept. of Zealand”'.
Commerce.
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The U.S. Geological Survey’s Alaska Map E

at the scale of 1:2,500,000. The figure
below represents the 1954 edition. The
1973 edition is similar, but the meridians
are straight. The Bathymetric Maps
Eastern Continental Margin U.S.A.,
published by the American Association
of Petroleum Geologists, uses these
straight meridians on its Modified
Transverse Mercator and is more
equivalent to the Equidistant Conic map
projection.

The Equidistant Conic projection is used in
atlases for portraying mid-latitude areas.
It is good for representing regions with a
few degrees of latitude lying on one side
of the Equator. The Kavraisky No. 4 map
projection is an Equidistant conic map
projection, in which standard parallels
are chosen to minimize overall error.

Used for large countries in the mid-latitudes having an east-west
orientation. The United States (50 states) Base Map uses standard
parallels at 37° N. and 65° N. Some of the National Topographic
Map Series 7'2-minute and 15-minute quadrangles and the State
Base Map Series are constructed on the Lambert Conformal Conic
map projection. The latter series uses standard parallels of 33° N.
and 45° N. Aeronautical charts for Alaska use standard parallels at
55° N. and 65° N. The National Atlas of Canada uses standard
parallels at 49° N. and 77° N. In the figure below, the outline
represents the United States (50 states) Base Map.

Used for thematic maps. Used for large countries with an east-west
orientation. Maps based on the Albers equal-area conic for Alaska
use standard parallels 55° N. and 65° N.; for Hawaii, the standard
parallels are 8° N. and 18° N. The National Atlas of the United
States, United States Base Map (48 states), and the Geologic map
of the United States (outlined below) are based on the standard
parallels of 29',2° N. and 45'%,° N.

Used for areas with a north-south
orientation. Only along central meridian
does it portray true shape, area, distance,
and direction. Formerly used as the base
of the 7'%- and 15-minute quadrangles of
the National Topographic Map Series.
Individual sheets of this series can be
edge-joined since they are drawn with
straight meridians for convenience. They
cannot be mosaicked beyond a few
sheets.

Used to represent one or both of the
American continents. Examples are the
Basement map of North America and the
Tectonic map of North America.

Used to represent one or both of the
American continents. Examples are the
Basement map of North America and the
Tectonic map of North America.
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Tectonic

map

Tectonic

map

Used as an equal-area projection to portray
areas that have a maximum extent in a
north-south direction. Used as a world
equal-area projection in atlases to show
distribution patterns. The figure below

Used as an equal-area map projection of
the world in atlases such as the Great
Soviet World Atlas, 1937. Kavraisky No. 6
map projection closely resembles Eckert
No.6 and is used in the Ocean Atlas, 1953,

The Van der Grinten projection is used by
the National Geographic Society for
world maps. Used by the U.S. Geological
Survey to show distribution of mineral
resources on the sea floor (McKelvey and

represents an interrupted version of the Vol. 2. Wang, 1970).
sinusoidal projection with three central
meridians. Used by the U.S. Geological
Survey as the base for maps showing
prospective hydrocarbon provinces of
the world and sedimentary basins of the
world.
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Type of
map
projection

Planes
(Azimuthal)

Azimuthal Equidistant

Lambert Azimuthal Equal-Area

Orthographic

Stereographic

Gnomonic

Equidistant

Equal Area

Conformal

Lines of
longitude
(meridians)

Polar aspect: the meridians are straight lines radiating from the point of tangency. Oblique
aspect: the meridians are complex curves concave toward the point of tangency.
Equatorial aspect: the meridians are complex curves concave toward a straight central
meridian, except the outer meridian of a hemisphere, which is a circle.

Polar aspect: the meridians are straight lines radiating from the point of tangency. Oblique
and equatorial aspects: meridians are complex curves concave toward a straight central
meridian, except the outer meridian of a hemisphere, which is a circle.

meridian.

Polar aspect: the meridians are straight lines radiating from the point of tangency. Oblique
aspect: the meridians are ellipses, concave toward the center of the projection.
Equatorial aspect: the meridians are ellipses concave toward the straight central

centered at the projection center.

-

Polar aspect: the meridians are straight lines radiating from the point oftangency. Oblique
and equatorial aspects: the meridians are arcs of circles concave toward astraight central
meridian. In the equatorial aspect the outer meridian of the hemisphere is a circle

Polar aspect: the meridians are straight lines radiating from the point of tangency. Oblique
and equatorial aspects: the meridians are straight lines.

Lines of
latitude
(parallels)

pole; the equator is straight.

Polar aspect: the parallels are concentric circles. Oblique aspect: the parallels are complex
curves. Equatorial aspect: the parallels are complex curves concave toward the nearest

Polar aspect: parallels are concentric circles. Oblique and equatorial aspects: the parallels
are complex curves. The equator on the equatorial aspect is a straight line.

Polar aspect: the parallels are concentric circles. Oblique aspect: the parallels are ellipses
concave toward the poles. Equatorial aspect: the parallels are straight and parallel.

toward the poles; the equator is straight.

Polar aspect: the parallels are concentric circles. Oblique aspect: the parallels are
nonconcentric arcs of circles concave toward one of the poles with one parallel being a
straight line. Equatorial aspect: parallels are nonconcentric arcs of circles concave

Polar aspect: the parallels are concentric circles. Oblique and equatorial aspects: parallels
are ellipses, parabolas, or hyperbolas concave toward the poles (except for the equator,
which is straight).

from the point of tangency.

Polar aspect: the meridian spacing is equal and increases away from the point of
tangency. Parallel spacing is equidistant. Angular and areal deformation increase away

Polar aspect: the meridian spacing is equal and increases, and the parallel spacing .is
unequal and decreases toward the periphery of the projection. The graticule spacing in
all aspects retains the property of equivalence of area.

Polar aspect: meridian spacing is equal and increases, and the parallel spacing decreases
from the point of tangency. Oblique and equatorial aspects: the graticule spacing
decreases away from the center of the projection.

retains the property of conformality.

The graticule spacing increases away from the center of the projection in all aspects, and it

Polar aspect: the meridian spacing is equal and increases away from the pole. The parallel
spacing increases very rapidly from the pole. Oblique and equatorial aspects: the
graticule spacing increases very rapidly away from the center of the projection.

Graticule
spacing
i i i i jecti i i re extreme, rapidly increasing away from
Polar aspect: linear scale is true from the point of tangency along the meridians only. Linear scale is better than most azimuthals but not as good as the equidistant. Angular Scale is true on the parallels in the polar aspect and on all circles centered at the pole of the Scale increases toward the periphery of the projection. L|?ﬁzr;c;atl:ra:fdtizg:::j;i?g:real deformationa pidlyin g y
Oblique an.d equatorial aspects: linear scale is true from the point of tangency. In all deformation increases toward the periphery of the projection. Scale decreases radially pro;:ection in all aspects. Scale decreases along lines radiating from the center of the s
Linear aspects the Azimuthal Equidistant shows distances true to scale when measured toward the periphery of the map projection. Scale increases perpendicular to the radii projection.
scale between the point of tangency and any other point on the map. toward the periphery.
jection i i i jection i i j i i jecti i icall ojected onto a plane, and the point of
Projection is mathematically based on a plane tangent to the earth. The entire earth can be The Lambert Azimuthal Equal-Area projection is mathematically based on a plane tangent The Orthographic projection is geometrically based on a plane tangent to the earth, an.d The SFergogrgphlc projection is geometrically pro;_ected ont'o aplane, and the_ pointof the The G_noﬁrg:?slcatr::;ji::?:r ;trg\:c;zfrt\”ﬁ?s E/mp:)ro;smleto 0.1 a;:u” i \zith ' of
ré resented. Generally the Azimuthal Equidistantmap projection portrays lessthan one to the earth. It is the only projection that can accurately represent both areas and true the point of projection is at infinity. The earth appears as it would from qute_r space. This projection is on the surfacle of the sphere.opposne the point of tangency. Clrclgs on the grolec Wopiopasc ro'ecti.on b o b
he%isphere.though the other hemisphere can be portrayed but is much distorted. Has direction from the center of the projection. This projection generally represents only one projection is a truly graphic representation of the earth and is a projection in which earth appear as strfaug:\ht lines, partshpf circles, or cntr.cles on :he prg]ectlorlml. Dlre:ctuons isntcr):(;r;lﬁ/ pu?j'ection e \;:OVJS ook g i v poin{s b
' i ing i imu i i i i i i i isual aid. It is the most familiar of the azimuthal map projections. from the center of the stereographic map projection are true. Generally only one ho ; test _any s
i i tance scaling from the point of tangency. The Azimuthal hemisphere. The polar aspect is used by the U.S. Geological Survey in the National distortion becomes a visua " azim . . - ion . . . I ChS SRO S stares SptRaE YO YRR 480
guji:i'srfacr:;or:oéggti::?s ?J'sseg forradio a?wd seismic wpork as ever\?plac‘:ain the world will Atlas. The polar, oblique, and equatorial aspects are used by the U.S. Geological Survey Directions from the center of the Orthographic map projection are true. The U.S. he.mnsphere is p?rtrayeq. The Stereograph!c projection is the fnost wndely'u§ed :tra:%::r:g;lConrs:aqtuiir:::llye,slt I1§hl:a e ST T s R S arcator
Notes and s R i di ion f th y pol t of t The U.S for the Circum-Pacific Map Geological Survey uses the Orthographic map projection in the National Atlas. azimuthal projection, mainly used for portraying large, continent-size areas of s:m-nar pproxi y great « .
usas - Sho‘f"" Survey Wi dIStance' e aspect of - Azimuthal Equidistant in th ional . extent in all directions. It is used in geophysics for solving problems in spherical projection for navigation.
Geological Survey uses the oblique aspect of j(he Azimuthal Equnghstant in the National Ot Tie setar asct Te.beod Tor sopraphic maeand mevigational charts: The
ot _f°" Iarge'-scale B s e American Geographical Society uses the stereographic map projection as the basis forits
of the United Nations. ““Map of the Arctic”’. The U.S. Geological Survey uses the stereographic map projection
as the basis for maps of Antarctica.
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THE PROPERTIES AND USES OF SELECTED MAP PROJECTIONS

By

Tau Rho Alpha and John P. Snyder

1982

suited to a particular purpose.

INTRODUCTION

Most map users give little thought to the map projection used for a large-scale map of a small area. As the map scale becomes smaller
and the area shown increases, however, the properties of the map projection become increasingly important. The brief descriptions of the
properties and uses of map projections in this report are intended to help the user compare these projections and choose the one best

This reportis a revision of U.S. Geological Survey Map I-1096, “’A survey of the properties and uses of selected map projections’’ (Alpha
and Gerin, 1978). Principal differences between this and the earlier version are that (1) new terms are included, (2) a new example of the
Albers equal-area projection is provided, and (3) the Kavraisky No. 4 projection has been deleted (mainly because it is rarely used).

. Parallels are parallel.

©ONDO A WN =

same two parallels.

1From Robinson (1969, p. 212)

NATURAL PROPERTIES OF THE EARTH’S GRATICULE!

. Parallels are spaced equally on meridians.
. Meridians and other great circle arcs are straight lines (if looked at perpendicularly to the earth’s surface).
. Meridians converge toward the poles and diverge toward the equator.
Meridians are equally spaced on the parallels, but their distance apart decreases from the equator to the pole.
. Meridians at the equator are spaced the same as parallels.
. Meridians at 60° are half as far apart as parallels.

. Parallels and meridians cross one another at right angles.
. The area of the surface bounded by any two parallels and two meridians (a given distance apart) is the same anywhere between the

10. The scale factor at each point is the same in any direction.

DEFINITION OF TERMS

projection has specific properties that make it useful for specific objectives.

ASPECT—Individual azimuthal map projections are divided into three aspects: the polar aspect which is tangent at the pole, the
equatorial aspect which is tangent at the equator, and the oblique aspect which is tangent anywhere else. (The word “aspect” has
replaced the word “‘case’” in the modern cartographic literature).
CONFORMALITY—A map projection is conformal when (1) meridians and parallels intersect at right angles, and (2) at any point the scale
is the same in every direction. The shapes of very small areas and angles with very short sides are preserved.

DEVELOPABLE SURFACE—A developable surface is a simple geometric form capable of being flattened without stretching. Many map
projections can then be grouped by a particular developmental surface: cylinder, cone, or plane.

EQUAL AREA—A map projection is equal area when every part, as well as the whole, has the same area as the corresponding parton the
earth, at the same reduced scale.

GRATICULE—The graticule is the spherical coordinate system based on lines of latitude and longitude.

LINEAR SCALE—Linear scale is the relation between a distance on a map projection and the corresponding distance on the earth.
MAP PROJECTION—A map projection is a systematic representation of a round body such as the earth on a flat (plane) surface. Each map

1:2,500,000.
p. 294-303.

Map 1-632.

strength).

174 p.

Agency, 111 p.
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PREFACE

This publication is a major revision of USGS Bulletin 1532. which is titl.etl Map
Projections Used by the U.S. Geological Survey. Although several pm‘tmn.f' are
essentially unchanged except for corrections and clarification, there is consider-
able revision in the early general discussion, and the scope of the book. originally
limited to map projections used by the U.S. Geological Survey, now extends to
include several other popular or useful projections. These and dozens of other
projections are described with less detail in the forthcoming USGS publication Au
Album of Map Projections.

As before, this study of map projections is intended to be useful to both the
reader interested in the philosophy or history of the projections and the reader
desiring the mathematics. Under each of the projections described, the nonmathe-
matical phases are presented first, without interruption by formulas. They are
followed by the formulas and tables, which the first type of reader may skip
entirely to pass to the nonmathematical discussion of the next projection. Even
with the mathematics, there are almost no derivations and very little calculus.
The emphasis is on describing the characteristics of the projection and how it is
used.

This professional paper, like Bulletin 1532, is also designed so that the user can
turn directly to the desired projection, without reading any other section, in
order to study the projection under consideration. However, the list of symbols
may be needed in any case, and the random-access feature will be enhanced by a
general understanding of the concepts of projections and distortion. As a result of
this intent, there is some repetition which will be apparent when the book is read
sequentially.

For the more complicated projections, equations are given in the order of
usage. Otherwise, major equations are given first, followed by subordinate
equations. When an equation has been given previously, it is repeated with the
original equation number, to avoid the need to leaf back and forth. Numerical
examples, however, are placed in appendix A. It was felt that placing these with
the formulas would onty add to the difficulty of reading through the mathematical
sections.

The equations are frequently taken from other credited or standard sources,
but a number of equations have been derived or rearranged for this publication by
the author. Further attention has been given to computer efficiency, for example
by encouraging the use of nested power series in place of multiple-angle series.

[ acknowledged several reviewers of the original manuseript in Bulletin 1532.
These were Alden P. Colvocoresses, William J. Jones, Clark H. Cramer, Marlys
K. Brownlee, Tau Rho Alpha, Raymond M. Batson, William H. Chapman, Atef A.
Elassal, Douglas M. Kinney (ret.), George Y. G. Lee, Jack P. Minta (ret.), and
John F. Waananen, all then of the USGS, Joel L. Morrison, then of the Uni-
versity of Wisconsin/Madison, and the late Allen J. Pope of the National Ocean
Survey. I remain indebted to them, especially to Dr. Colvocoresses of the USGS,
who is the one person most responsible for giving me the opportunity to assemble
this work for publication. In addition, Jackie T. Durham and Robert B. McEwen
of the USGS have been very helpful with the current volume, and several
reviewers, especially Clifford J. Mugnier, a consulting cartographer, have pro-
vided valuable critiques which have influenced my revisions. Other users in and
out of the USGS have also offered useful comments. For the plotting of all

computer-prepared maps, the personnel of the USGS Eastern Mapping Center
have been most cooperative.
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The depletion of the first printing of this professional paper has led to a
reprinting with some two dozen corrections known at this time. The most
significant corrections involve equations (7-15), (7-18), and (7-20) on pages 46 and
47, the footnote on p. 72, the last coefficient on p. 209, the numerical example on
pages 281 through 283, the resolution of the coordinate systems for Wyoming on
pages 373 and 374, and a coordinate for North Carolina on p. 376. I appreciate the
help of users in calling my attention to some of these corrections.

For the third printing of this book, another dozen or more corrections have
been included, all minor, but in a continuing effort to make this professional paper
still more reliable. Again I appreciate the input of users who pointed out some
of these corrections.

John P. Snyder
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= a(l = N = all - eA",
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= relative scale factor along a parallel of latitude.

n = cone constant on conic projections, or the ratio of the angle between meridians to the true

angle, called [ in some other references.

v
[

surface area.

*
]

radius of the sphere, either actual or that corresponding to scale of the map.

rectangular coordinate: distance to the right of the vertical line (Y axis) passing through

the origin or center of a projection (if negative, it is distance to the left). In practice_. a
“false” a or “false easting” is frequently added to all values of x to eliminate negative
numbers. (Note: Many British texts use X and Y axes interchanged, not rotated, from this

convention.)

y = rectangular coordinate: distance above the horizontal line (X axis) passing through the
origin or center of a projection (if negative, it is distance below). In practice, a “false” y or
“false northing” is frequently added to all values of y to eliminate negative numbers.

: = angular distance from North Pole of latitude &, or (90° — &), or colatitude.

z, = angular distance from North Pole of latitude ¢,, or (90° — ¢,).

2; = angular distance from North Pole of latitude &, or (90° — &),

In = natural logarithm, or logarithm to base e, where e = 2.71828.

8 = angle measured counterclockwise from the central meridian, rotating about the center of
the latitude circles on a conic or polar azimuthal projection, or beginning due south, rotating
about the center of projection of an oblique or equatorial azimuthal projection.

8’ = angle of intersection between meridian and parallel.

A = longitude east of Greenwich (for longitude west of Greenwich, use a minus sign).
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longitude of the meridian extending down on the map from the North Pole or up from the

South Pole.

>
1

of the Earth’s Equator, when graticule is rotated on the Earth.
p = radius of latitude circle on conic or polar azimuthal projection, or radius from center on

any azimuthal projection.

transformed longitude measured east along transformed equator from the north crossing

¢ = north geodetic or geographic latitude (if latitude is south, apply a minus sign).

¢o = middle latitude. or latitude chosen as the origin of rectangular coordinates for a projection.
&' = transformed latitude relative to the new poles and equator when the graticule is rotated on
the globe.

b,. &, = standard parallels of latitude for projections with two standard parallels. These are true

to scale and free of angular distortion.

&, (without ¢») = single standard parallel on cylindrical or conic projections; latitude of central point

on azimuthal projections.

w = maximum angular deformation at a given point on a projection.

1. All angles are assumed ta be in radians, unless the degree symbol ( * ) ik used.

2. Unless there is a note to the contrary, and if the expression for which the srctan is sought has a numerator over a denominator, the
formulas i which arctan is required (ususlly Lo oblain  longitude) are <o arranged that the Fortran ATAN2 function should be
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MAP PROJECTIONS—
A WORKING MANUAL

By JOHN P. SNYDER

ABSTRACT

After decades of using only one map projection, the Polyconic, for its mapping program, the U.S.
Geological Survey (U'SGS) now uses xeveral of the more common projections for its published maps.
For larger scale maps, including topographic quadrangles and the State Base Map Series, conformal
projections such as the Transverse Mercator and the Lambert Conformal Conic are used, Equal-area
and equidistant projections appear in the National Atlas. Other projections, such as the Miller
Cylindrical and the Van der Grinten, are chosen occasionally for convenience, sometimes making use
of existing base maps prepared by others. Some projections treat the Earth only as a sphere. others as
either ellipsoid or sphere.

The U'SGS has also conceived and designed several new projections, including the Space Oblique
Mercator, the first map projection designed to permit mapping of the Earth continuously from a
satellite with low distortion. The mapping of extraterrestrial bodies has resulted in the use of stand-
ard projections in completely new settings. Several other projections which have not been used by
the USGS are frequently of interest to the cartographic public.

With increased computerization, it is important to realize that rectangular coordinates for all these
projections may be mathematically caleulated with formulas which would have seemed tou compli-
cated in the past, but which now may be programmed routinely, especially if aided by numerical
examples. A dizeussion of appearance, usage, and history is given together with both forward and
inverse equations for each projection involved.

INTRODUCTION

The subject of map projections, either generally or specifically, has been dis-
cussed in thousands of papers and books dating at least from the time of the Greek
astronomer Claudius Ptolemy (about A.D. 150). and projections are known to
have been in use some three centuries earlier. Most of the widely used projections
date from the 16th to 19th centuries, but scores of variations have been developed
during the 20th century. In recent years, there have been several new publica-
tions of widely varying depth and quality devoted exclusively to the subject. In
1979, the USGS published Maps for America, a book-length description of its
maps (Thompson, 1979). The USGS has also published bulletins describing from
one to three projections (Birdseye, 1929; Newton. 1985).

In spite of all this literature, there was no definitive single publication on map
projections used by the USGS, the agency responsible for administering the
National Mapping Program, until the first edition of Bulletin 1532 (Snyder, 1982a),
The USGS had relied on map projection treatises published by the former Coast
and Geodetic Survey (now the National Ocean Service). These publications did
not include sufficient detail for all the major projections now used by the USGS
and others. A widely used and outstanding treatise of the Coast and Geodetic
Survey (Deetz and Adams, 1934), last revised in 1945, only touches upon the
Transverse Mercator, now a commonly used projection for preparing maps. Other
projections such as the Bipolar Oblique Conie Conformal, the Miller Cylindrical,
and the Van der Grinten, were just being developed, or, if older, were seldom
used in 1945. Deetz and Adams predated the extensive use of the computer and
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pocket calculator, and, instead, offered extensive tables for plotting projections
with specific parameters,

Another classic treatise from the Coast and Geodetic Survey was written by
Thomas (1952) and is exclusively devoted to the five major conformal projections.
It emphasizes derivations with a summary of formulas and of the history of these
projections, and is directed toward the skilled technical user. Omitted are tables,
graticules, or numerical examples.

In USGS Bulletin 1532 the author undertook to describe each projection which
has been used by the USGS sufficiently to permit the skilled, mathematically
oriented cartographer to use the projection in detail. The descriptions were also
arranged so as to enable a lay person interested in the subject to learn as much as
desired about the principles of these projections without being overwhelmed by
mathematical detail. Deetz and Adams’ (1934) work set an excellent example in
this combined approach.

While Bulletin 1532 was deliberately limited to map projections used by the
USGS, the interest in the bulletin has led to expansion in the form of this profes-
sional paper, which includes several other map projections frequently seen in
atlases and geography texts. Many tables of rectangular or polar coordinates
have been included for conceptual purposes. For values between points, formulas
should be used, rather than interpolation. Other tables list definitive parameters
for use in formulas. A glossary as such is omitted, since such definitions tend to be
oversimplified by nature. The reader is referred to the index instead to find a
more complete description of a given term.

The USGS, soon after its official inception in 1879, apparently chose the Poly-
conic projection for its mapping program. This projection is simple to construct
and had been promoted by the Survey of the Coast, as it was then called, since
Ferdinand Rudolph Hassler's leadership of the early 1800’s. The first published
USGS topographic “quadrangles,” or maps bounded by two meridians and two
parallels, did not carry a projection name, but identification as “Polyconic
projection” was added to later editions. Tables of coordinates published by the
USGS appeared in 1904, and the Polyconic was the only projection mentioned by
Beaman (1928, p. 167).

Mappers in the Coast and Geodetic Survey, influenced in turn by military and
civilian mappers of Europe, established the State Plane Coordinate System in the
1930's. This system involved the Lambert Conformal Conic projection for States
of larger east-west extension and the Transverse Mercator for States which were
longer from north to south. In the late 1950’s, the USGS began changing quadran-
gles from the Polyconic to the projection used in the State Plane Coordinate
System for the principal State on the map. The USGS also adopted the Lambert
for its series of State base maps.

As the variety of maps issued by the USGS increased, a broad range of projec-
tions became important: The Polar Stereographic for the map of Antarctica, the
Lambert Azimuthal Equal-Area for maps of the Pacific Ocean, and the Albers
Equal-Area Conic for the National Atlas (USGS, 1970) maps of the United
States. Several other projections have been used for other maps in the National
Atlas, for tectonic maps, and for grids in the panhandle of Alaska. The mapping
of extraterrestrial bodies, such as the Moon, Mars, and Mercury, involves old
projections in a completely new setting. Perhaps the first projection to be origi-
nated within the USGS is the Space Oblique Mercator for continuous mapping
using imagery from artificial satellites.

It is hoped that this expanded study will assist readers to understand better
not only the basis for maps issued by the USGS, but also the principles and
formulas for computerization, preparation of new maps, and transference of data
between maps prepared on different projections.



1. CHARACTERISTICS OF MAP PROJECTIONS
MAP PROJECTIONS—GENERAL CONCEPTS
1. CHARACTERISTICS OF MAP PROJECTIONS

The general purpose of map projections and the basic problems encountered
have been discussed often and well in various books on cartography and map
projections. (Robinson, Sale, Morrison, and Muehrcke, 1984; Steers, 1970; and
Greenhood, 1964, are among later editions of earlier standard references.) Every
map user and maker should have a basic understanding of projections, no matter
how much computers seem to have automated the operations. The concepts will
be concisely described here, although there are some interpretations and formu-
las that appear to be unique.

For almost 500 years, it has been conclusively established that the Earth is
essentially a sphere, although a number of intellectuals nearly 2,000 vears earlier
were convinced of this. Even to the scholars who considered the Earth flat, the
skies appeared hemispherical, however. It was established at an early date that
attempts to prepare a flat map of a surface curving in all directions leads to
distortion of one form or another.

A map projection is a systematic representation of all or part of the surface of a
round body. especially the Earth, on a plane. This usually includes lines delineat-
ing meridians and parallels, as required by some definitions of a map projection,
but it may not, depending on the purpose of the map. A projection is required in
any case. Since this cannot be done without distortion, the cartographer must
choose the characteristic which is to be shown accurately at the expense of others,
or a compromise of several characteristics. If the map covers a continent or the
Earth, distortion will be visually apparent. If the region is the size of a small
town, distortion may be barely measurable using many projections, but it can still
be serious with other projections. There is literally an infinite number of map
projections that can be devised, and several hundred have been published, most
of which are rarely used novelties. Most projections may be infinitely varied by
choosing different points on the Earth as the center or as a starting point.

It cannot be said that there is one “best” projection for mapping. It is even
risky to claim that one has found the “best” projection for a given application,
unless the parameters chosen are artificially constricting. A carefully constructed
globe is not the best map for most applications because its scale is by necessity too
small. A globe is awkward to use in general, and a straightedge cannot be
satisfactorily used on one for measurement of distance.

The details of projections discussed in this book are based on perfect plotting
onto completely stable media. In practice, of course, this cannot be achieved. The
cartographer may have made small errors, especially in hand-drawn maps, but a
more serious problem results from the fact that maps are commonly plotted and
printed on paper, which is dimensionally unstable. Typical map paper can expand
over 1 percent with a 60 percent increase in atmospheric humidity, and the
expansion coefficient varies considerably in different directions on the same sheet.
This is much greater than the variation between common projections on large-
scale quadrangles, for example. The use of stable plastic bases for maps is recom-
mended for precision work, but this is not always feasible, and source maps may
be available only on paper, frequently folded as well. On large-scale maps, such as
topographic quadrangles, measurement on paper maps is facilitated with rectan-
gular grid overprints, which expand with the paper. Grids are discussed later in
this book.

The characteristics normally considered in choosing a map projection are as
follows:
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1. Area.—Many map projections are designed to be equal-area, so that a coin
of any size, for example, on one part of the map covers exactly the same area of
the actual Earth as the same coin on any other part of the map. Shapes, angles,
and scale must be distorted on most parts of such a map, but there are usually
some parts of an equal-area map which are designed to retain these characteris-
ties correctly, or very nearly so. Less common terms used for equal-area projec-
tions are equivalent, homolographic, or homalographic (from the Greek homalos
or homos (“same”) and graphos (“write™)); authalic (from the Greek autos (*same”)
and ailos (“area”)), and equiareal.

2. Shape.—Many of the most common and most important projections are
conformal or orthomorphic (from the Greek orthos or “straight” and morphe or
“shape™, in that normally the relative local angles about every point on the map
are shown correctly. (On a conformal map of the entire Earth there are usually
one or more “singular” points at which local angles are still distorted.) Although a
large area must still be shown distorted in shape, its small features are shaped
essentially correctly. Conformality applies on a point or infinitesimal basis, whereas
an equal-area map projection shows areas correctly on a finite, in fact mapwide
basis. An important result of conformality is that the local scale in every direction
around any one point is constant. Because local angles are correct, meridians
intersect parallels at right (90°) angles on a conformal projection, just as they do on
the Earth. Areas are generally enlarged or reduced throughout the map, but they
are correct along certain lines, depending on the projection. Nearly all large-scale
maps of the Geological Survey and other mapping agencies throughout the world
are now prepared on a conformal projection. No map can be both equal-area and
conformal.

While some have used the term aphylactic for all projections which are neither
equal-area nor conformal (Lee. 1944), other terms have commonly been used to
describe special characteristics:

3. Scale.—No map projection shows scale correctly throughout the map, but
there are usually one or more lines on the map along which the scale remains true.
By choosing the locations of these lines properly, the scale errors elsewhere may
be minimized, although some errors may still be large, depending on the size of
the area being mapped and the projection. Some projections show true scale
between one or two points and every other point on the map, or along every
meridian. They are called equidistant projections.

4. Direction.—While conformal maps give the relative local directions cor-
rectly at any given point, there is one frequently used group of map projections,
called azimuthal (or zenithal), on which the directions or azimuths of all points on
the map are shown correctly with respect to the center. One of these projections
is also equal-area, another is conformal, and another is equidistant. There are also
projections on which directions from two points are correct, or on which direc-
tions from all points to one or two selected points are correct, but these are rarely
used.

5. Special characteristics.—Several map projections provide special characteris-
tics that no other projection provides. On the Mercator projection, all rhumb
lines, or lines of constant direction, are shown as straight lines. On the Gnomonic
projection, all great circle paths—the shortest routes between points on a sphere—
are shown as straight lines. On the Stereographic, all small circles, as well as
great circles, are shown as circles on the map. Some newer projections are spe-
cially designed for satellite mapping. Less useful but mathematically intriguing
projections have been designed to fit the sphere conformally into a square, an
ellipse, a triangle, or some other geometric figure.

6. Method of construction.—In the days before ready access to computers and
plotters, ease of construction was of greater importance. With the advent of
computers and even pocket calculators. very complicated formulas can be handled
almost as routinely as simple projections in the past.
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While the above six characteristics should ordinarily be considered in choosing
a map projection, they are not so obvious in recognizing a projection. In fact, if
the region shown on a map is not much larger than the United States, for example,
even a trained eye cannot often distinguish whether the map is equal-area or
conformal. It is necessary to make measurements to detect small differences in
spacing or Jocation of meridians and parallels, or to make other tests. The type of
construction of the map projection is more easily recognized with experience, if
the projection falls into one of the common categories.

There are three types of developable' surfaces onto which most of the map
projections used by the USGS are at least partially geometrically projected. They
are the cylinder, the cone, and the plane. Actually all three are variations of the
cone. A cylinder is a limiting form of a cone with an increasingly sharp point or
apex. As the cone becomes flatter, its limit is a plane.

If a eylinder is wrapped around the globe representing the Earth (see fig. 1), so
that its surface touches the Equator throughout its circumference, the meridians
of longitude may be projected onto the cylinder as equidistant straight lines
perpendicular to the Equator, and the parallels of latitude marked as lines paral-
lel to the Equator, around the circumference of the cylinder and mathematically
spaced for certain characteristics. For some cases. the parallels may also be
projected geometrically from a common point onto the cylinder, but in the most
common cases they are not perspective. When the cylinder is cut along some
meridian and unrolled, a cylindrical projection with straight meridians and straight
parallels results. The Mercator projection is the best-known example, and its
parallels must be mathematically spaced.

If a cone is placed over the globe, with its peak or apex along the polar axis of
the Earth and with the surface of the cone touching the globe along some particu-
lar parallel of latitude. a conic (or conical) projection can be produced. This time
the meridians are projected onto the cone as equidistant straight lines radiating
from the apex, and the parallels are marked as lines around the circumference of
the cone in planes perpendicular to the Earth's axis, spaced for the desired
characteristics. The parallels may not be projected geometrically for any useful
conic projections. When the cone is cut along a meridian, unrolled. and laid flat,
the meridians remain straight radiating lines, but the parallels are now circular
arcs centered on the apex. The angles between meridians are shown smaller than
the true angles.

A plane tangent to one of the Earth’s poles is the basis for polar azimuthal
projections. In this case, the group of projections is named for the function, not
the plane, since all common tangent-plane projections of the sphere are azimuthal.
The meridians are projected as straight lines radiating from a point, but they are
spaced at their true angles instead of the smaller angles of the conic projections.
The parallels of latitude are complete circles, centered on the pole. On some
important azimuthal projections, such as the Stereographic (for the sphere), the
parallels are geometrically projected from a common point of perspective; on
others, such as the Azimuthal Equidistant, they are nonperspective.

The concepts outlined above may be modified in two ways, which still provide
cylindrical, conic, or azimuthal projections (although the azimuthals retain this
property precisely only for the sphere).

1. The cylinder or cone may be secant to or cut the globe at two parallels instead
of being tangent to just one. This conceptually provides two standard parallels;
but for most conic projections this construction is not geometrically correct.
tl‘he plane may likewise cut through the globe at any parallel instead of touch-
inga pole, but this is only useful for the Stereographic and some other perspec-
tive projections.

'A developable surface is one that can be transformed to a plane without distortion.
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F1GURE 1.—Projection of the Earth onto the three major surfaces. In a few cases, projection is
geometric, but in most cases the projection is mathematical to achieve certain features.
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2. The axis of the cylinder or cone can have a direction different from that of the
Earth’s axis, while the plane may be tangent to a point other than a pole (fig.
1). This type of modification leads to important oblique. transverse, and equa-
torial projections, in which most meridians and parallels are no longer straight
lines or ares of circles. What were standard parallels in the normal orientation
now become standard lines not following parallels of latitude.

Other projections resemble one or another of these categories only in some
respects. There are numerous interesting pseudocylindrical (or “false evlindrical™)
projections. They are so called because latitude lines are straight and parallel,
and meridians are equally spaced, as on cylindrical projections, but all meridians
except the central meridian are curved instead of straight. The Sinusoidal is a
frequently used example. Pseudoconic projections have concentric circular ares
for parallels, like conics, but meridians are curved: the Bonne is the only common
example. Pseudoazimuthal projections are very rare: the polar aspect has concen-
tric circular ares for parallels, and curved meridians. The Polyconic projection is
projected onto cones tangent to each parallel of latitude, so the meridians are
curved, not straight. Still others are more remotely related to cvlindrical, conic,
or azimuthal projections, if at all.
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2. LONGITUDE AND LATITUDE

To identify the location of points on the Earth, a graticule or network of longi-
tude and latitude lines has been superimposed on the surface. They are commonly
referred to as meridians and parallels, respectively. The concept of latitudes and
longitudes was originated early in recorded history by Greek and Egyptian
scientists, especially the Greek astronomer Hipparchus (2nd century, B.C.). Clau-
dius Ptolemy further formalized the concept (Brown, 1949, p. 50, 52, 68).

PARALLELS OF LATITUDE

Given the North and South Poles, which are approximately the ends of the axis
about which the Earth rotates, and the Equator, an imaginary line halfway between
the two poles, the parallels of latitude are formed by circles surrounding the
Earth and in planes parallel with that of the Equator. If circles are drawn equally
spaced along the surface of the sphere, with 90 spaces from the Equator to each
pole, each space is called a degree of latitude. The circles are numbered from 0° at
the Equator to 90° North and South at the respective poles. Each degree is
subdivided into 60 minutes and each minute into 60 seconds of arc.

For 2,000 years, measurement of latitude on the Earth involved one of two
basic astronomical methods. The instruments and accuracy, but not the principle,
were gradually improved. By day. the angular height of the Sun above the hori-
zon was measured. By night, the angular height of stars, and especially the
current pole star, was used. With appropriate angular conversions and adjust-
ments for time of day and season, the latitude was obtained. The measuring
instruments included devices known as the cross-staff, astrolabe, back-staff,
quadrant, sextant, and octant, ultimately equipped with telescopes. They were
supplemented with astronomical tables called almanacs, of increasing complica-
tion and accuracy. Finally, beginning in the 18th century, the use of triangulation
in geodetic surveying meant that latitude on land could be determined with high
precision by using the distance from other points of known latitude. Thus meas-
urement of latitude, unlike that of longitude, was an evolutionary development
almost throughout recorded history (Brown, 1949, p. 180-207).

MERIDIANS OF LONGITUDE.

Meridians of longitude are formed with a series of imaginary lines, all intersect-
ing at both the North and South Poles, and crossing each parallel of latitude at
right angles, but striking the Equator at various points. If the Equator is equally
divided into 360 parts, and a meridian passes through each mark, 360 degrees of
longitude result. These degrees are also divided into minutes and seconds. While
the length of a degree of latitude is always the same on a sphere, the lengths of
degrees of longitude vary with the latitude (see fig. 2). At the Equator on the
sphere, they are the same length as the degree of latitude, but elsewhere they are
shorter.

There is only one location for the Equator and poles which serve as references
for counting degrees of latitude, but there is no natural origin from which to count
degrees of longitude, since all meridians are identical in shape and size. It thus
becomes necessary to choose arbitrarily one meridian as the starting point, or
prime meridian. There have been many prime meridians in the course of history,
swayed by national pride and international influence. For over 150 years, France
officially used the meridian through Ferro, an island of the Canaries. Eighteenth-
century maps of the American colonies often show longitude from Londen or
Philadelphia. During the 19th century, boundaries of new States were described
with longitudes west of a meridian through Washington, D.C., 77°03" 02.3" west
of the Greenwich (England) Prime Meridian (Van Zandt, 1976, p. 3). The latter
was increasingly referenced, especially on seacharts due to the proliferation of
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FigUre 2.—Mevridians and parallels on the sphere.

those of British origin. In 1884, the International Meridian Conference, meeting
in Washington, agreed to adopt the “meridian passing through the center of the
transit instrument at the Observatory of Greenwich as the initial meridian for
longitude,” resolving that “from this meridian longitude shall be counted in two
directions up to 180 degrees, east longitude being plus and west longitude minus”
(Brown, 1949, p. 283, 297).

The choice of the prime meridian is arbitrary and may be stated in simple
terms. The accurate measurement of the difference in longitude at sea between
two points, however, was unattainable for centuries, even with a precision suffi-
cient for the times. When extensive transatlantic exploration from Europe began
with the voyages of Christopher Columbus in 1492, the inability to measure
east-west distance led to numerous shipwrecks with substantial loss of lives and
wealth. Seafaring nations beginning with Spain offered sizable rewards for the
invention of satisfactory methods for measuring longitude. It finally became evi-
dent that a portable, dependable clock was needed, so that the height of the Sun
or stars could be related to the time in order to determine longitude. The study of
the pendulum by Galileo, the invention of the pendulum clock by Christian Huygens
in 1656, and Robert Hooke’s studies of the use of springs in watches in the 1660’s
provided the basic instrument, but it was not until John Harrison of England
responded to his country’s substantial reward posted in 1714 that the problem
was solved. For five decades, Harrison devised successively more reliable ver-
sions of a marine chronometer, which were tested at sea and gradually accepted
by the Board of Longitude in painstaking steps from 1765 to 1773. Final compensa-
tion required intervention by the King and Parliament (Brown, 1949, p. 208—240:
Quill, 1966).

Thus a major obstacle to accurate mapping was overcome. On land, the meas-
urement of longitude lagged behind that of latitude until the development of the
clock and the spread of geodetic triangulation in the 18th century made accuracy a
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reality. Electronic means of measuring distance and angles in the mid- to late-20th
century have redefined the meaning of aceuracy by orders of magnitude.

CONVENTIONS IN PLOTTING

When constructing meridians on a map projection, the central meridian, usu-
ally a straight line, is frequently taken to be a starting point or 0° longitude for
calculation purposes. When the map is completed with labels, the meridians are
marked with respect to the Greenwich Prime Meridian. The formulas in this book
are arranged so that Greenwich longitude may be used directly. All formulas
herein use the convention of positive east longitude and north latitude, and nega-
tive west longitude and south latitude. Some published tables and formulas else-
where use positive west longitude, so the reader is urged to use caution in compar-
ing values.

GRIDS

Because calculations relating latitude and longitude to positions of points on a
given map can become quite involved, rectangular grids have been developed for
the use of surveyors. In this way, each point may be designated merely by its
distance from two perpendicular axes on the flat map. The Y axis normally coin-
cides with a chosen central meridian, y increasing north. The X axis is perpendicu-
lar to the Y axis at a latitude of origin on the central meridian, with x increasing
east. Frequently x and y coordinates are called “eastings” and “northings,”
respectively, and to avoid negative coordinates may have “false eastings” and
“false northings” added.

The grid lines usually do not coincide with any meridians and parallels except
for the central meridian and the Equator. Of most interest in the United States
are two grid systems: The Universal Transverse Mercator (UTM) Grid is described
on p. 57, and the State Plane Coordinate System (SPCS) is described on p. 51.
Preceding the UTM was the World Polyconic Grid (WPG), used until the late
1940’s and described on p. 127.

Grid systems are normally divided into zones so that distortion and variation of
scale within any one zone is held below a preset level. The type of boundaries
between grid zones varies. Zones of the WPG and the UTM are bounded by
metidians of longitude, but for the SPCS State and county boundaries are used.
Some grid boundaries in other countries are defined by lines of constant grid
value using a local or an adjacent grid as the basis. This adjacent grid may in turn
be based on a different projection and a different reference ellipsoid. A common
boundary for non-U.S. offshore grids is an ellipsoidal rhumb line, or line of con-
stant direction on the ellipsoid (see p. 46); the ellipsoidal geodesic, or shortest
route (see p. 199)is also used. The plotting of some of these boundaries can become
quite complicated (Clifford J. Mugnier, pers. comm., 1985).
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3. THE DATUM AND THE EARTH AS AN ELLIPSOID

For many maps, including nearly all maps in commercial atlases, it may be
assumed that the Earth is a sphere. Actually, it is more nearly an oblate ellipsoid
of revolution, also called an oblate spheroid. This is an ellipse rotated about its
shorter axis. The flattening of the ellipse for the Earth is only about one part in
three hundred; but it is sufficient to become a necessary part of calculations in
plotting accurate maps at a scale of 1:100,000 or larger, and is significant even for
1:5,000,000-scale maps of the United States, affecting plotted shapes by up to 2/3
percent (see p. 27). On small-scale maps, including single-sheet world maps, the
oblateness is negligible. Formulas for both the sphere and ellipsoid will be dis-
cussed in this book wherever the projection is used or is suitable in both forms.

The Earth is not an exact ellipsoid, and deviations from this shape are continu-
ally evaluated. The geoid is the name given to the shape that the Earth would
assume if it were all measured at mean sea level. This is an undulating surface
that varies not more than about a hundred meters above or below a well-fitting
ellipsoid, a variation far less than the ellipsoid varies from the sphere. It is
important to remember that elevations and contour lines on the Earth are reported
relative to the geoid, not the ellipsoid. Latitude, longitude, and all plane coordi-
nate systems, on the other hand, are determined with respect to the ellipsoid.

The choice of the reference ellipsoid used for various regions of the Earth has
been influenced by the local geoid, but large-scale map projections are designed to
fit the reference ellipsoid, not the geoid. The selection of constants defining the
shape of the reference ellipsoid has been a major concern of geodesists since the
early 18th century. Two geometric constants are sufficient to define the ellipsoid
itsell. They are normally expressed either as (1) the semimajor and semiminor
axes (or equatorial and polar radii, respectively), (2) the semimajor axis and the
flattening, or (3) the semimajor axis and the eccentricity. These pairs are directly
interchangeable. In addition, recent satellite-measured reference ellipsoids are
defined by the semimajor axis, geocentrie gravitational constant, and dvnamical
form factor, which may be converted to flattening with formulas from physics
(Lauf, 1983, p. 6).

In the early 18th century, Isaac Newton and others concluded that the Earth
should be slightly flattened at the poles, but the French believed the Earth to be
egg-shaped as the result of meridian measurements within France. To settle the
matter, the French Academy of Sciences, beginning in 1735, sent expeditions to
Peru and Lapland to measure meridians at widely separated latitudes. This estab-
lished the validity of Newton’s conclusions and led to numerous meridian measure-
ments in various locations, especially during the 19th and 20th centuries: between
1799 and 1951 there were 26 determinations of dimensions of the Earth.

The identity of the ellipsoid used by the United States before 1844 is uncertain,
although there is reference to a flattening of 1/302. The Bessel ellipsoid of 1841
(zee table 1) was used by the Coast Survey from 1844 until 1880, when the bureau
adopted the 1866 evaluation by the British geodesist Alexander Ross Clarke
using measurements of meridian arcs in western Europe, Russia, India, South
Africa, and Peru (Shalowitz, 1964, p. 117—118; Clarke and Helmert, 1911,
p. BO7T—808). This resulted in an adopted equatorial radius of 6,378,206.4 m and a
polar radius of 6,356,583.8 m, or an approximate flattening of 1/294.9787.

The Clarke 1866 ellipsoid (the year should be included since Clarke is also
known for ellipsoids of 1858 and 1880) has been used for all of North America until
a change which is currently underway, as described below.

In 1909 John Fillmore Hayford reported calculations for a reference ellipsoid
frorp U.S. Coast and Geodetic Survey measurements made entirely within the
United b.‘tates. This was adopted by the International Union of Geodesy and
Ge_ophysncs (IUGG) in 1924, with a flattening of exactly 1/297 and a semimajor
axis of exactly 6,378,388 m. This is therefore called the International or the

11
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TABLE 1.—Some official ellipsoids in use throughout the world’

9

Equatorial Polar Radius Flattening
Name Date Radius, a b, meters I Use
meters
GRS 80% _______ 1980 6,378,137* 6,356,752.3  1/298.257 Newly adopted

WGS 728 .. 1972 6,378,135* 6,356,750.5 1/298.26 NASA; Dept. of Defense;
oil companies

Australian_____ 1965 6,378,160*  6,356,774.7 1/298.25*  Australia

Krasovsky..... 1940 6,378,245*  6,356,863.0 1/298.3* Soviet Union

Internat’l .

Hayford __.-.:. 1909 6,378,388* 6,356,911.9  1/297* Re‘:r:)till(li(jer of the

Clarke' ________ 1880 6,378,249.1 6,356,514.9  1/293.46** Most of Africa; France

Clarke .......... 1866 6,378,206.4* 6,356,583.8* 1/294.98 North America; Philip-
pines

Airyl 1830 6,377,563.4  6,356,256.9  1/299.32** Great Britain

Bessel ... 1841 6,377,397.2  6,356,079.0  1/299.15** Central Europe; Chile;
Indonesia

Everest! ______ 1830 6,377,276.3  6,356,075.4  1/300.80** India; Burma; Paki-
stan; Afghan.; Thai-
land; etc.

Values are shown Lo accuracy in excess significant figures, to reduce computational confugion.
' Maling, 1973, p. 7: Thomas, 1970, p. 84; Army, 1973, p. 4, endmap; Colvocoresses, 1969, p. 33; World Geodetic,
1974,
? Geodetic Reference System. Ellipsoid derived from adopled model of Earth. WGS 84 has same dimensions
within aceuracy shown.
! World Geodetic System. Ellipsoid derived from adopted model of Earth.
¥ Also used in some regions with various modified constants.
* Taken as exacl values. The third number (where two are asterisked) is deriver] using the following relationships:
b = a (1=, f = 1-ha. Where only one is asterisked (for 1972 and 1980), certain physical constants not
shown are taken as exact, hut / as shown is the adopted value.
** Derived from a and b, which are rounded off as shown after conversions from lengths in leel.
+ Other than regions listed elsewhere in column. or some smaller areas.

Hayford ellipsoid. and is used in many parts of the world, but it was not adopted
for use in North America, in part because of all the work already accomplished
using the older datum and ellipsoid (Brown, 1949, p. 293: Hayford, 1909).

There are over a dozen other principal ellipsoids, however, which are still used
by one or more countries (table 1). The different dimensions do not only result
from varying accuracy in the geodetic measurements (the measurements of loca-
tions on the Earth), but the curvature of the Earth's surface (geoid) is not uniform
due to irregularities in the gravity field.

Until recently, ellipsoids were only fitted to the Earth’s shape over a particular
country or continent. The polar axis of the reference ellipsoid for such a region,
therefore, normally does not coincide with the axis of the actual Earth, although
it is assumed to be parallel. The same applies to the two equatorial planes. The
discrepancy between centers is usually a few hundred meters at most. Only
satellite-determined coordinate systems, such as the WGS 72 and GRS 80 men-
tioned below, are considered geocentric. Ellipsoids for the latter systems repre-
sent the entire Earth more accurately than ellipsoids determined from ground
measurements, but they do not generally give the “best fit” for a particular
region.

The reference ellipsoids used prior to those determined by satellite are related
to an “initial point” of reference on the surface to produce a datum, the name
given to a smooth mathematical surface that closely fits the mean sea-level sur-
face throughout the area of interest. The “initial point” is assigned a latitude,
longitude, elevation above the ellipsoid, and azimuth to some point. Once a datum
is adopted, it provides the surface to which ground control measurements are
referred. The latitude and longitude of all the control points in a given area are
then computed relative to the adopted ellipsoid and the adopted “initial point.”
The projection equations of large-scale maps must use the same ellipsoid parame-
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ters as those used to define the local datum; otherwise, the projections will he
inconsistent with the ground control.

The first official geodetic datum in the United States was the New England Datum, adopted in
1879. It was based on surveys in the eastern and northeastern states and referenced to the Clarke
Spheroid of 1866, with triangulation station Principio, in Maryland, as the origin. The first transconti-
nental arc of triangulation was completed in 1899, connecting independent surveys along the Pacific
Coast. In the intervening years, other surveys were extended to the Gulf of Mexico. The New
England Datum was thus extended to the south and west without major readjustment of the surveys
in the east. In 1901, this expanded network was officially designated the United States Standard
Datum., and triangulation station Meades Ranch, in Kansas, was the origin. In 1913, after the geodetic
organizations of Canada and Mexico formally agreed to base their triangulation networks on the
United States network, the datum was renamed the North American Datum.

By the mid-1920's, the problems of adjusting new surveys to fit into the existing network were
acute. Therefore, during the 5-year period 1927 - 1932 all available primary data were adjusted into a
system now known as the North American 1927 Datum.”™" The coordinates of station Meades Ranch
were not changed but the revised coordinates of the network comprised the North American 1927
Datum (National Academy of Sciences, 1971, p. 7).

Satellite data have provided geodesists with new measurements to define the
best Earth-fitting ellipsoid and for relating existing coordinate systems to Lhe
Earth’s center of mass. U.S. military efforts produced the World Geodetic Sys-
tem 1966 and 1972 (WGS 66 and WGS 72). The National Geodetic Survey is
planning to replace the North American 1927 Datum with a new datum, the
North American Datum 1983 (NAD 83). which is Earth-centered based on both
satellite and terrestrial data. The IUGG in 1980 adopted a new model of the Earth
called the Geodetic Reference System (GRS) 80, from which is derived an ellip-
soid which has been adopted for the new North American datum. As a result, the
latitude and longitude of almost every point in North America will change slightly,
as well as the rectangular coordinates of a given latitude and longitude on a map
projection. The difference can reach 300 m. U.S. military agencies are developing
a worldwide datum called WGS 84, also based on GRS 80, but with slight
differences. For Earth-centered datums, there is no single “origin” like Meades
Ranch on the surface. The center of the Earth is in a sense the origin.

For the mapping of other planets and natural satellites, only Mars is treated as
an ellipsoid. Other bodies are taken as spheres (table 2), although some irregular
satellites have been treated as triaxial ellipsoids and are “mapped” ortho-
graphically.

In most map projection formulas, some form of the eccentricity e is used, rather
than the flattening f. The relationship is as follows:

2 =2-f oorf=1~(1-¢e)12

For the Clarke 1866, e* is 0.006768658. For the GRS 80, ¢ is 0.0066943800.

AUNILIARY LATITUDES

By definition, the geographic or geodetic latitude, which is normally the lati-
tude referred to for a point on the Earth, is the angle which a line perpendicular
to the surface of the ellipsoid at the given point makes with the plane of the
Equator. It is slightly greater in magnitude than the geocentric latitude, except
at the Equator and poles, where it is equal. The geocentrie latitude is the angle
made by a line to the center of the ellipsnid with the equatorial plane.

Formulas for the spherical form of a given map projection may be adapted for
use with the ellipsoid by substitution of one of various “auxiliary latitudes” in
place of the geodetic latitude. Oscar S. Adams (1921) developed series and other
formulas for five substitute latitudes, generally building upon concepts described
in the previous century. In using them, the ellipsoidal Earth is, in effect, first
transformed to a sphere under certain restraints such as conformality or equal
area, and the sphere is then projected onto a plane. If the propet: auxiliary

13
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TAaBLE 2.—Official figures for extraterrestrial mapping

(tFrom Davies. et al., 1983; Davies, Private commun., 1985.) Rudius of Moon chosen so that all elevations are positive. Radius of
Mars ix based on a level of 6.1 millibar atmospheric pressure; Mars has both posilive and negative elevations. |

Equalorial
Body radius a*
(kilometers)
Earth’s Moon 1,738.0
Mercury 2,439.0
Venus 6,051.0
Mars 3,393.4*
Galilean satellites of Jupiter

To 1,815
Europa 1,569
Ganymede 2,631
Callisto 2,400

Satellites of Saturn
Mimas 198
Enceladus 253
Tethys 525
Dione 560
Rhea 765
Titan 2,575
lapetus 725

Satellites of Uranus
Ariel 665
Umbriel 555
Titania 800
Oberon 815
Miranda 250

Salellite of Neptune
Triton 1,600

* Ahove bodies are Laken ax spheres except for Mars, an ellipsoid with eccentricity e of 0.101929. Flattening f =
1 - (1 -« Unlsted satellites are taken as triaxial ellipsoids, or mapping is not expected in the near future.
Mimas and Enceladus have also heen given ellipsoidal parameters. but not for mapping.

latitudes are chosen, the sphere may have either true areas, true distances in
certain directions, or conformality, relative to the ellipsoid. Spherical map projec-
tion formulas may then be used for the ellipsoid solely with the substitution of the
appropriate auxiliary latitudes.

It should be made clear that this substitution will generally not give the projec-
tion in its preferred form. For example, using the conformal latitude (defined
below) in the spherical Transverse Mercator equations will give a true ellipsoidal,
conformal Transverse Mercator, but the central meridian cannot be true to scale.
More involved formulas are necessary, since uniform scale on the central merid-
ian is a standard requirement for this projection as commonly used in the ellipsoi-
dal form. For the regular Mercator, on the other hand, simple substitution of the
conformal latitude is sufficient to obtain both conformality and an Equator of
correct scale for the ellipsoid.

Adams gave formulas for all these auxiliary latitudes in closed or exact form, as
well as in series, except for the authalic (equal-area) latitude, which could also
have been given in closed form. Both forms are given below. For improved
computational efficiency using the series, see equations (3—34) through (3—39).
In finding the auxiliary latitude from the geodetic latitude, the closed form may
be more useful for computer programs. For the inverse cases, to find geodetic
from auxiliary latitudes, most closed forms require iteration, so that the series
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form is probably preferable. The series form shows more readily the amount of
deviation from the geodetic latitude ¢. The formulas given later for the individual
ellipsoidal projections incorporate these formulas as needed, so there is no need to
refer back to these for computation, but the various auxiliary latitudes are grouped
together here for comparison. Some of Adams’ symbols have been changed to
avoid confusion with other terms used in this book.

The conformal latitude x, giving a sphere which is truly conformal in accord-
ance with the ellipsoid (Adams, 1921, p. 18, 84),

x = 2arctan [tan (/4 + &/2) [(1 — e sin $)(1 + e sin $)]2 | — /2 3-1

172
o 1+ sind 1 —esindg \* — (3—1a)
a Zalctan[(l — sin d)) ( 1+ esind )
= b — (€%2 + 5e'/24 + 3¢%32 + 281¢%/5760 + . . .)sin 20

+ (5¢'748 + Te%/80 + 697e™11520 + . . .)sin 4¢

— (13¢/480 + 46113440 + . . .)sin 6b + (1237¢%/161280

+ .. )sin8d + ... 3-2)

with x and ¢ in radians. In seconds of arc for the Clarke 1866 ellipsoid,
X = & — 700.0427" sin 2¢ + 0.9900" sin 4 + 0.0017" sin 6¢ (3-3)

The inverse formula, for ¢ in terms of x, may be a rapid iteration of an exact
rearrangement of (3—1), successively placing the value of ¢ caleulated on the left
side into the right side of (3—4) for the next calculation, using x as the first
trial . When & changes by less than a desired convergence value, iteration is
stopped.

& = 2arctan {tan (w/4 + y/2)[(1 + e sin &)1 — e sin $))e'2) — /2 (3-4)

The inverse formula may also be written as a series, without iteration (Adams,
1921, p. 85):

b = x + (€2 + 5e'i24 + %12 + 13¢/360 + .. . ) sin 2
+ (Te48 + 29¢%240 + 811eY11520 + .. . ) sin 4y
+ (7e%120 + 811120 + . . . ) sin 6y
+ (4279¢"/161280 + . .. )sin 8y + . . . (3-5)

or, for the Clarke 1866 ellipsoid, in seconds,
& = x + 700.0420" sin 2x + 1.3859" sin 4x + 0.0037" sin Gy (3-6)

Adams referred to x as the isometric latitude, but this name is now applied to
¥, a separate very nonlinear function of &, which is directly proportional to the
spacing of parallels of latitude from the Equator on the ellipsoidal Mercator
projection. Another common symbol for isometric latitude is 1. It is also useful for
other conformal projections:

b = Injtan(n/4 + ¢/2) [(1-e sin ¢)(1 + e sin b)e2 3-7

Because of the rapid variation from &, b is not given here in series form. By
comparing equations (3~1) and (3~7), it may be seen, however, that

b = Intan (n/4 + x/2) 3—-8)

so that x may be determined from the series in (3=2) and converted to ¢ with

(3—8), although there is no particular advantage over using (3—7).
For the inverse of (3—7), to find & in terms of |, the choice is between iteration
ol a closed equation (3—10) and use of series (3~5) with a simple inverse of (3—8):
X = 2 arctan eV — 1/2 3-9)

where e is the base of natural logarithms, 2.71828.

15
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For the iteration, apply the principle of successive substitution used in (3—4)
to the following, with (2 arctan e¥—7/2) as the first trial ¢:
& = 2 arctan |e¥[(1 + e sin &)/(1 — ¢ sin $)]*2 — 7/2 (3-10)

Note that e and e are not the same.

The authalic latitude B, on a sphere having the same surface area as the
ellipsoid, provides a sphere which is truly equal-area (authalic), relative to the
ellipsoid:

B = arcsin (q/qp) 3-11)
where
g = (1 — &% isin d/(1 - e*sin* &) — (1/(2e)) In[(1 —¢ sin ¢)/(1 + esind)] (3—12)

and g, is g evaluated for a ¢ of 90°. The radius Rq of the sphere having the same
surface area as the ellipsoid is calculated as follows:

R, =a(g,/2)" (3-13)

where a is the semimajor axis of the ellipsoid. For the Clarke 1866, R, is
6.370,997.2 m.
The equivalent series for B (Adams, 1921, p. 85)

B=d— (643 + 31e* /180 + 59¢%/560 + . . . ) sin2d + (17*/360 + 61¢"/1260 + . . .)
sin 4 — (383¢%/45360 + . . . )sin 6 + . .. (3-14)

where B and ¢ are in radians. For the Clarke 1866 ellipsoid, the formula in seconds
of arc is:

B = & — 467.0129" sin 2& + 0.4494" sin 46 + 0.0005" sin 6b  (3—15)

For ¢ in terms of B, an iterative inverse of (3—12) may be used with the
inverse of (3—-11):

(1 — ¢ sin® &)? ¢ sin ¢ 1 1-e¢sind\|,, ..
b=d + / . - —— ¢ — In| ———— )| 8-
2 cos ¢ 1-¢* 1-¢ésin®d 2e 1 + esin ¢

where

q = g,sinf (3-17)

9 is found from (3—12) for a & of 90°, and the first trial ¢ is arcsin (¢/2), used
on the right side of (3—16) for the calculation of & on the left side, which is then
used on the right side until the change is less than a preset limit. (Equation
(3—-16) is derived from ecqjuation (3—12) using a standard Newton-Raphson itera-
tion.)

To find & from B with a series:

b = B+ (643 + 31¢*180 + 517¢"/5040 + .. .) sin 2B
+ (2364360 + 251¢"/3780 + . . . ) sin 48 (3—18)
+ (761745360 + . . . )sin 6B + . ..

or, for the Clarke 1866 ellipsoid, in seconds,
b = B + 467.0127" sin 28 + 0.6080" sin 48 + 0.0011" sin 68 (3—-19)

The rectifying latitude p (designated w by Adams), giving a sphere with correct
distances along the meridians, requires a series in any case (or a numerical inte-
gration which is not shown).

wo=w MM, (3-20)

where
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M = a[(1 — ¢%/4 — 3e*/64 — 5¢%/256 — . . . )b — (3e2/§ + 3632
+ 456571024 + . ..)sin 2 + (15¢%/256 + 45¢°/1024 + ... ) sin 4¢
— (35¢%/3072 + . ..)sinBd + ... ] (3-21)

and M. is M evaluated for a ¢ of 90°, for which all sine terms drop out. M is
the distance along the meridian from the Equator to latitude ¢. For the Clarke
1866 ellipsoid, the constants simplify to, in meters,

M = 111132.08944° — 16216.94 sin 2¢ + 17.21 sin 4¢ — 0.02 sin 6  (3—22)

The first coefficient in (3—21) has been multiplied by ©/180 to use ¢ in degrees.
To use . properly, the radius R, of the sphere must be ZMp/fr for correct scale.
For the Clarke 1866 ellipsoid, Ry, is 6,367,399.7 m. A series combining (3—20)
and (3-21) is given by Adams (1921, p. 125):

b= ¢ - 3e/2 — 9,16 + . ..)sin 2 + (15¢,%/16 — 15,732 + .. .)

sin 4b — (35¢,%/48 — . . . ) sin 6 + (315¢,Y/512 — . . .)
sin8b + ... (3—23)
where L e 7
e = [1 = (1~ eAHVZY1 + (1 - )12} (3—24)

and p and ¢ are given in radians. For the Clarke 1866 ellipsoid, in seconds,
w = & — 525.3298" sin 24 + 0.5575" sin 4 + 0.0007" sin 6b (3—25)

The inverse of equations (3—23) or (3—25). for ¢ in terms of p, given M,
will be found useful for several map projections to avoid iteration, since a series
is required in any case (Adams, 1921, p. 128).

b=+ Bey/2 —27¢%32 + ... )sin2p + (21,416 — 55¢,%/32 + . . .)
sin 4 + (151,96 — . . . ) sin 6u + (1097¢,*/512 — . . .)
sin B + . .. (3-26)

where ¢, is found from equation (3—24) and p from (3—-20), but M is given,
not caleulated from (3—21). For the Clarke 1866 ellipsoid, in seconds of are,

b = p + 525.3295" sin 2p + 0.7805" sin 4 + 0.0016” sin 6 (3—27)

The following closed and exact formulas, from which equations (3—20) through
(3—25) may be ultimately derived, are given as a matter of interest.

M = al — ) [14]1 — ¢ sin® $)%2] dd (3—27a)

Equation (3—27a), the integral of (4—19) in a later chapter, may not be exactly
integrated. While Simpson's rule may be used, it is not as satisfactory here as
it is in some other cases (equation (27—-6a), etc.). However, (3—27a) may be
transformed to an elliptic integral of the second kind, for which the arithmetic-
geometric-mean (A.G.M.) iteration can provide any desired accuracy within com-
puter programming limitations (Messenger, T.J., pers. commun., 1984; Abram
owitz and Stegun, 1964, p. 598—99):

M= alf®( - ¢ sind)2 dd — ¢ sin ¢ cos b/(1 — ¢® sin? $)I2]  (3—27b)

The remaining auxiliary latitudes listed by Adams (1921, p. 84) are more useful
for derivation than in substitutions for projections:

The geocentric latitude d’q (designated ¢ by Adams) referred to in the first
paragraph in this section is simply as follows:

¢, = arctan ((1 - ¢°) tan ] (3—28)
As a series,

d)g = ¢ — e, sin 20 + (€,%/2) sin 4 — (e5*/3) sin 6b + . . . (3-29)
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TABLE 3.—Corrections for awxiliary latitudes on the Clarke 1866 ellipsoid

|Corrections are given, rather than actual values. For example. if the geadetic latitude is S0°N., the conformal latitude is 50° - 11'29.7" =
497 48°30.37 N. For southern latitudes. the corrections are the same, disregarding the sign of the latitude. That is, the conformal
Iatitude for a & of lat. 30" S, is 40° 48°30.3° 8. From Adams, 1921}

Geodetic Conformal Authalic Rectifying Geocentric Parametric
(®) ) (B ) ) (=) (n=9)

0’ 00.0" 0’ 00.0” 0’ 00.0" 0’ 00.0" 0’ 00.0”
-2 019 -1 21.2 -1 314 -2 02,0 -1 00.9
- 4 00.1 -2 40.0 -3 00.0 - 4 00.3 -2 00.0
- 5 509 -3 53.9 -4 23.1 - 5 513 -2 55.4
- 7 310 -5 00.6 -5 38.2 -7 314 -3 454
- 8 57.2 -5 5B8.2 -6 43.0 - 8 57.7 -4 28.6
-10 07.1 -6 44.8 -7 354 -10 07.6 -5 03.6
~10 58.5 -7 19.1 -8 14.0 -10 58.9 -5 29.3
-11 29.7 -7 40.1 -8 37.5 —11 30.2 -5 45.0
-11 40.0 -7 47.0 -8 45.3 -11 40.5 -5 50.2
-11 29.1 -7 39.8 -8 37.2 -11 29.4 -5 44.8
-10 57.2 -7 18.6 -8 13.3 -10 57.4 -5 28.9
-10 05.4 -6 44.1 -7 345 ~10 05.6 -5 03.0
- 8 55.3 -5 573 -6 41.9 - B8 5564 -4 28.0
- 7290 -4 59.7 -5 37.1 -7 29.1 -3 44.8
-5 49.2 -3 53.1 -4 22.2 - 5 49.2 -2 54.9
- 3 588 -2 394 -2 59.3 - 3 58.8 -1 59.6
-2 012 -1 20.9 -1 31.0 - 2 01.2 -1 00.7
0 00.0 0 00.0 0 00.0 0 00.0 0 00.0

where ¢, and ¢ are in radians and e, = €*/(2 — ¢°). For the Clarke 1866 ellipsoid,
in seconds of are,

b, = ¢ — 700.44" sin 2 + 1.19" sin 4¢ (3-30)
The reduced or parametric latitude n (designated 6 by Adams) of a point on
the ellipsoid is the latitude on a sphere of radius a for which the parallel has the

same radius as the parallel of geodetic latitude ¢ on the ellipsoid through the
given point:

n = arctan [(1 — ¢9)12 tan ¢] (3-31)

As a series,
n =& — e sin2p + (¢,2)sin 4 — (¢,3)sin6d + ... (3-32)

where ¢, is found from equation (3—24), and m and & are in radians. For the Clarke
1866 ellipsoid, using seconds of arc,

n = ¢ - 350.22" sin 2 + 0.30" sin 4 (3-33)

The inverses of equations (3-28) and (3-31) for ¢ in terms of geocentric or
reduced latitudes are relatively easily derived and are noniterative. The inverses
of series equations (3—-29), (3-30), (3-32), and (3—33) are therefore omitted.
Table 3 lists the correction for these auxiliary latitudes for each 5° of geodetic
latitude.

COMPUTATION OF SERIES
Most of the trigonometric series approximations throughout this book (for

example, equations (3—2) and (3-5)) are given in terms of multiple angles. In this
arrangement, the coefficients converge to zero more rapidly, but handling by
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computer is normally somewhat slower than that occurring with neste.d trigopq-
metric series. The latter are equivalent to power polynomials and require a mini-
mum number of computations of trigonometric functions from series built into the
software of most computers.

The pertinent series in this book fall into one of three forms (.3—34), (3—36) and
(3-38), in which & may be any variable. and () is the function:

If figp) = Asin24 + Bsindd + C sin 6b + D sin 8 (3—-34)

then fid) = sin 2 (A" + cos 2¢ (B' + cos 24 (C' + D' cos 26))  (3-35)

where
A =A-C
B =2B - 4D
¢ =4C
D' =8D
If fid) = Asind + Bsin3éd + C sin b + D sin Td (3—-136)
then  fld) = sin & (A’ + sin“dp (B" + sind (C' + D’ sin$)) (3-37)
where
A" =A + 3B + 5C + 7D
B’ = —-4B - 20C - 56D
¢ =16C + 112D
D' =-64D
If Ad)=A + Beos2b + Ccosdb + D cos 66 + E cos 8 (3—38)

then fid) = A" + cos2d (B' + cos2d(C" + cos2b (D' + E' cos 2d))) 3-39)
where

A" =A-C+ FE

B =B -3D
¢ =2C - 8F
D =4D
E' =8E

These are exact equivalents of the series as shown. First the primed coeffi-
cients are computed once for the full set of conversions from the original coeffi-
cients of (3—34), (3—36), or (3—38), then sin 2¢ and cos 2 are computed once for
each point in (3—35), or sin ¢ and sin$ once for each point in (3—37), or cos 24
once for each point in (3—39). Computation of fid) may then proceed from the
innermost nest outward with a speed up to 25-35 percent faster than that with
multiple-angle series.

For more efficient transformation of a great number of points from one set of
coordinates to another, polynomial approximations for the entire projection may
be considered. This is normally only practical for a limited region. For techniques

in determining the polynomial coefficients, the reader is referred to Snyder (1985a,
p. 5—6, 15-24).
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4. SCALE VARIATION AND ANGULAR DISTORTION

Since no map projection maintains correct scale throughout, it is important to
determine the extent to which it varies on a map. On a world map, qualitative
distortion is evident to an eye familiar with maps, after noting the extent to which
landmasses are improperly sized or out of shape, and the extent to which meridi-
ans and parallels do not intersect at right angles, or are not spaced uniformly
along a given meridian or given parallel. On maps of countries or even of continents,
distortion may not be evident to the eye, but it becomes apparent upon careful
measurement and analysis.

TISSOT'S INDICATRIX

In 1859 and 1881, Nicolas Auguste Tissot published a classic analysis of the
distortion which occurs on a map projection (Tissot, 1881; Adams, 1919, p. 153—163;
Maling, 1973, p. 64 —67). The intersection of any two lines on the Earth is repre-
sented on the flat map with an intersection at the same or a different angle. At
almost every point on the Earth, there is a right angle intersection of two lines in
some direction (not necessarily a meridian and a parallel) which are also shown at
right angles on the map. All the other intersections at that point on the Earth will
not intersect at the same angle on the map, unless the map is conformal, at least
at that point. The greatest deviation from the correct angle is called w, the
maximum angular deformation. For a conformal map, w is zero. (In some texts, 2w
is used rather than w.)

Tissot showed this relationship graphically with a special ellipse of distortion
called an indicatrix. An infinitely small circle on the Earth projects as an infinitely
small, but perfect, ellipse on any map projection. If the projection is conformal,
the ellipse is a circle, an ellipse of zero eccentricity. Otherwise, the ellipse has a
major axis and minor axis which are directly related to the scale distortion and to
the maximum angular deformation.

In figure 3, the left-hand drawing shows a circle representing the infinitely
small circular element, crossed by a meridian A and parallel ¢ on the Earth. The
right-hand drawing shows this same element as it may appear on a typical map
projection. For general purposes, the map is assumed to be neither conformal nor
equal-area. The meridian and parallel may no longer intersect at right angles, but

FIGURE 3.—Tissot’s Indicatrix. An infinitely small circle on the Earth {A) appears as an ellipse
on a typical map (B). On a conformal map. (B) is a circle of the same or of a different size.
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there is a pair of axes which intersect at right angles on both Earth (AB and CD)
and map (A’B’ and C'D’). There is also a pair of axes that on the map (E'F' and
G'H') intersect with the greatest angular deformation compared to the corre-
sponding axes on the Earth (EF and GH, not a right angle). The latter case has
the maximum angular deformation w. The orientation of these axes is such that .
+ ' = 90°, or, for small distortions, the lines fall about halfway between A'B’
and C'D’'. The orientation is of much less interest than the size of the deforma-
tion. If @ and b, the major and minor semiaxes of the indicatrix, are known, then

sin (w/2) = la — bi/i(a + b) 4-1)

If lines A and ¢ coincide with a and b, in either order, as in cylindrical and conic
projections, the calculation is relatively simple, using equations (4—2) through
(4—6) given below.

Scale distortion is most often calculated as the ratio of the scale along the
meridian or along the parallel at a given point to the scale at a standard point or
along a standard line, which is made true to scale. These ratios are called “scale
factors.” That along the meridian is called # and along the parallel, k. The term
“scale error” is frequently applied to (h—1) and (k—1). If the meridians and
parallels intersect at right angles, coinciding with a and b in figure 3, the scale
factor in any other direction at such a point will fall between / and k. Angle w may
be calculated from equation (4—1), substituting & and k in place of a and b. In
general, however, the computation of w is much more complicated, but is impor-
tant for knowing the extent of the angular distortion throughout the map.

The formulas are given here to calculate h, k, and w; but the formulas for & and
k are applied specifically to all projections for which they are deemed useful as the
projection formulas are given later. Formulas for w for specific projections have
generally been omitted.

Another term occasionally used in practical map projection analysis is “con-
vergence” or “grid declination.” This is the angle between true north and grid
north (or direction of the Y axis). For regular cylindrical projections this is zero,
for regular conic and polar azimuthal projections it is a simple function of longitude,
and for other projections it may be determined from the projection formulas by
calculus from the slope of the meridian (dy/dx) at a given latitude. It is used pri-
marily by surveyors for fieldwork with topographic maps. Convergence is not dis-
cussed further in this work.

DISTORTION FOR PROJECTIONS OF THE SPHERE

The formulas for distortion are simplest when applied to regular cylindrical,
conie (or conical), and polar azimuthal projections of the sphere. On each of these
types of projections, scale is solely a function of the latitude.

Given the formulas for rectangular coordinates x and y of any cylindrical projec-
tion as functions solely of longitude A and latitude ¢, respectively,

h = dy/(Rd) 4-2)
k = dx/(R cos bd\) (4-3)

Given the formulas for polar coordinates p and 6 of any conic projection as

functions solely of ¢ and A, respectively, where n is the cone constant or ratio of 0
to (A = Ay),

h = —dp/(Rdd) 4-4)
np/(R cos ¢) (4-5)

=
I
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Line of True Scale

Central Meridian

Scale error

e — —

Transverse Mercator Projection

Friere do—~Distortion patterns on common conformal map projections. The Transverse Mercator and
the Stereographic are shown with reduction in scale along the central meridian or at the center of
projection, respectively. If there ix no reduction, there is a single line ol true scale along the
central meridian on the Transverse Mercator and only a point of true scale at the center of the

Stereopraphic. The illustrations ave conceptual rather than precise, since each base map projee-

tion i an identical conic.

Lambert Conformal Conic Projection

Frovpr 4. —Continued.
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FiGURe 4.—Continued

Given the formulas for polar coordinates p and 8 of any polar azimuthal projec-
tion as functions solely of & and A, respectively, equations (4—4) and (4 =5) apply,
with » equal to 1.0:

=
|

= —dp/Rdd) -5
k = p/(R cos &) 4-6)

Equations (4—4) and (4—6) may be adapted to any azimuthal projection cen-
tered on a point other than the pole. In thix case &’ is the scale factor in the
direction of a straight line radiating from the center, and k" is the scale factor in a
direction perpendicular to the radiating line, all at an angular distance ¢ from the
center:

'
I

dp/i{Rdc) 4=-7
p/(R sin ¢) 4-8)

An analogous relationship applies o scale factors on oblique cylindrical and
conic projections.

For any of the pairs of equations from (4-2) through (4-&), the maximum
angular deformation w at any given point is calculated simply, as stated above,

sin (w/2) = h ~ kii(h + k) [EE)]

where 1 — kI signifies the absolute value of (h—k), or the positive value without
regard Lo sign. For equations (4-7) and (4-%), " and & are used in (4—9)
instead of h and k. respectively. In figure 4, distortion patterns are shown for
three conformal projections of the United States, choosing arbitrary lines of true
scale.

For the general case. including all map projections of the sphere, rectangular
coordinates .r and y are often both functions of both & and A, so they must he
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partially differentiated with respect to both & and A, holding X and ¢, respectively,
constant. Then,

= (UR) [(axiad)® + (aylod)?] 2 4-10)
k = [1/(R cos O] [(ax/aN?2 + (dyfany?]1z (4-11)
a = (0% + k* + 20k sino'n: (4-12)
b = (h* + k* — 2hk sin 9')12 (4—13)
where
sin 8" = [(Ay/ad) (Ar/aN) — (ax/ad) (8y/aN) J(REhk cos ¢) 4-14)

8 is the angle at which a given meridian and parallel intersect, and a’ and & are
convenient terms. The maximum and minimum scale factors a and b, at a given
point, may be calculated thus:

a=(a + b)2 (4—12a)
b= (a'" - b')2 (4—13a)

Equation (4—1) simplifies as follows for the general case:

sin (w/2) =h'la’ (4—1a)
The areal scale factor s:

8 = hk sin @’ 4-15)

For special cases:

(I s = hk if meridians and parallels intersect at right angles (8’ = 90°);

(2)h = k and w = 0if the map is conformal;

(3) b = 1’k on an equal-area map if meridians and parallels intersect at right
angles.”

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID

The derivation of the above formulas for the sphere utilizes the basic formulas
for the length of a given spacing (usually 1° or 1 radian) along a given meridian or a
given parallel. The following formulas give the length of a radian of latitude (L)
and ol longitude (L)) for the sphere:

Ly = R (4-16)
Ly, = Rcos¢ 4-17

where R is the radius of the sphere. For the length of 1° of latitude or longitude,
these values are multiplied by 7/180.

The radius of curvature on a sphere is the same in all directions. On the
ellipsoid, the radius of curvature varies at each point and in each direction along a
given meridian, except at the poles. The radius of curvature R’ in the plane of the
meridian is calculated as follows:

R = aQl—e®/(1-¢” sin® )2 (4-18)

“Maling 11973, p. 49-K1) has helpful derivations of these equations in less condensed forms. There are typo-
graphical errors in several of the equations in Maling, but these may be detected by following the derivation closely.
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TABLE 4.—Lengths, in meters, of 1° of latitude and longitude on two ellipsoids of reference

Latitude Clarke 1866 ellipsoid International (Hayford) ellipsoid
() 1° lat. 1° Iong;‘_ 1°lat. 1° Iong._p_
90° ___ o ____ 111,699.4 0.0 111,700.0 0.0
- 111,690.7 9,735.0 111,691.4 9,735.0
80 o __ 111,665.0 19,394.4 111,665.8 19,394.5
[ 111,622.9 28,903.3 111,624.0 28,903.5
70 e __ 111,565.9 38,188.2 111,567.4 38,188.5
65 o __ 111,495.7 47,1715 111,497.7 47,1779
60 _ ______ 111,414.5 55,802.2 11:,417.1 55,802.8
5h o ___ 111,324.8 63,996.4 111,327.9 63,997.3
50 . 111,229.3 71,698.1 111,233.1 71,699.2
445 o _ 111,130.9 78,849.2 111,135.4 78,850.5
40 o __ 111,032.7 85,396.1 111,037.8 85,397.7
35 110,937.6 91,290.3 110,943.3 91,292.2
30 .. 110,848.5 96,488.2 110,854.8 96,490.4
25 o ___ 110,768.0 100,951.9 110,774.9 100,954.3
20 o __ 110,698.7 104,648.7 110,706.0 104,651.4
W5 L ____ 110,642.5 107,551.9 110,650.2 107,554.8
10 o _____ 110,601.1 109,640.7 110,609.1 109,643.7
S 110,575.7 110,899.9 110,583.9 110,903.1
O 110,567.2 111,320.7 110,575.5 111,323.9

The length of a radian of latitude is defined as the circumference of a circle of this
radius, divided by 2w, or the radius itself. Thus,

Ly = a(l—e)/(1-¢? sin? ¢)** (4~-19)

For the radius of curvature N of the ellipsoid in a plane perpendicular to the
meridian and also perpendicular to a plane tangent to the surface,

N = a/(1-¢? sin’)'? (4—-20)

Radius & is also the length of the perpendicular to the surface from the surface
to the polar axis. The length of a radian of longitude is found, as in equation
(4=17), by multiplying N by cos ¢, or

L, = a cos ¢/(1—e° sin?d)'2 (4-21)

The lengths of 1° of latitude and 1° of longitude for the Clarke 1866 and the Inter-
national ellipsoids are given in table 4. They are found from equations (4—19) and
(4-21), multiplied by w/180 to convert to lengths for 1°.
When these formulas are applied to equations (4—~2) through (4-6), the values
of h and k for the ellipsoidal forms of the projections are found to be as follows:
For cylindrical projections:

h = dy/(R'de)
= (1-¢* sin’¢)*? dy/la(1-e®)dé] (4-22)
k = dx/(N cos dbd)
= (1—¢? sin® )12 dx/(a cos ¢ d\) (4-23)
For conic projections:
h = —dp/(R'dd)

~(1-¢®sin®b)*? dpffa(l —e?)do) 4-24)
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k = np/(N cos ¢)
= np(1—e? sin® $)'2/(a cos ¢) (4-25)

For polar azimuthal projections:

h
k

—(1—-e? sind)*? dp/la(l —e?)d o} (4-24)
p(1—e? sin®p)'?/(a cos ¢) (4—26)

Equations (4—7) and (4-8) do not have ellipsoidal equivalents. Equation (4—9)
remains the same for equations (4—22) through (4-26):

sin (w/2) = lh—=ki/(th+k) 4-9)

For the general projection of the ellipsoid, equations (4—10) and (4—11) are
similarly modified:

h = [(ax/ad)¢ + (ay/ad)?1 (1 —e? sind) 2 a(l1—e?)] (4-27)
k= [(0x/aM)? + (0y/oM)?13(1—e? sin®d)?(a cos ¢) (4—28)

Equations (4-12) through (4-15), (4—12a), (4—13a), and (4—1a), listed for the
sphere, apply without change, except that R% becomes a%(1—e?)/(1—e%sin$)? in
(4—14).

Specific calculations are shown during the discussion of individual projections.

The importance of using the ellipsoid instead of the sphere for designing a pro-
jection may be quantitatively evaluated by determining the ratio or product of
some of the elementary relationships. The ratio of the differential length of a
radian of latitude along a meridian on the sphere to that on the ellipsoid is found
by dividing the equation (4—16) by equation (4—-19), or

C,. = R(1-¢% sin® ¢)*?/[a(1-¢?)] (4-29)

A related ratio for the length of a radian of longitude along a parallel on the
sphere to that on the ellipsoid is found by dividing equation (4—17) by equation
(4-21), or

Cp = R(1-¢? sin® ¢)'%a (4-30)

From these, the local shape factor C, may be found as the ratio of (4—29) to
(4-30):

Co = C,,/C, = (1-¢* sin® $)(1-¢?) (4-31)
and the area factor C, is their product:
Co=CnCp = R2(1-¢? sin® ¢)%[a®(1-e®)] (4-32)

If h and k are calculated for the spherical version of a map projection, the actual
scale factors on the spherieal version relative to the ellipsoid may be determined
by multiplying k by C,, and k by C,,. For normal cylindrical and conic projections
and polar azimuthal projections, the conformality or shape factor may be taken as
hik (not the same as w) multiplied by C,, and the area scale factor hk may be
multiplied by C,.

Except for C,, which is independent of R/a, R must be given an arbitrary value
such as R, (see equation (3—13)), Ry (see second sentence following equation
(3—22)), or another reasonable balance between the major and minor semiaxes a
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TABLE 5.—Ellipsoidal correction factors to apply to spherical projections based on Clarke 1866

ellipsoid

Lat. (N&S) cC.* C, C, C.*
90° o 0.99548 0.99548 1.00000 0.99099
[ R 99617 199571 1.00046 .99189
60 .99803 .99633 1.00170 99437
6 1.00058 99718 1.00341 99776
0 1.00313 99802 1.00511 1.00114
15 1.00499 .99864 1.00636 1.00363

o 1.00568 .99887 1.00681 1.00454
Multiply by** h k hik hk

* C,, = 1.0for48.24" lat. and C, = 1.0 for 35.32° lat. Values of C,,, C,, and C, are based on a radius of 6,370.997 m for

the sphere used in the spherical map projection,
** h = scale factor along meridian.

k = scale factor along parallel of latitude.

For normal cylindrical and conic projections and polar azimuthal projections:

hik = shape factor.

hk = area scale factor.

For example, if, on a spherical Albers Equal-Area Conic map projection based on sphere of radius 6,370,997 m,
h = 1.00132 and k = 0.99868 at lat. 45° N., this map has an area scale factor of 1.00132 x 0.99868 x 00.99775 = 0.99775,
relative to the correct area scale for the Clarke 1966 ellipsoid. If the ellipsoidal Albers were used, this factor would be
1.0

and b of the ellipsoid. Using R, and the Clarke 1866 ellipsoid, table 5 shows the
magnitude of these corrections. Thus, a conformal projection based on the sphere
has the correct shape at the poles for the ellipsoid, but the shape is about %/5 of
1 percent (0.00681) in error near the Equator (that is, Tissot’s Indicatrix is an
ellipse with minor axis about %/ of 1 percent shorter than the major axis at the
Equator when the spherical form is compared to the ellipsoid).

A map extending over a large area will have a scale variation of several percent,
which far outweighs the significance of the less-than-1-percent variation between
sphere and ellipsoid. A map of a small area, such as a large-scale detailed topo-
graphic map, or even a narrow strip map, has a small-enough intrinsic scale
variation to make the ellipsoidal correction a significant factor in accurate mapping;
e.g., a 7.5-min quadrangle normally has an intrinsic scale variation of 0.0002
percent or less.

CAUCHY-RIEMANN AND RELATED EQUATIONS

Relatively simple equations provide necessary and sufficient conditions for any
map projection, spherical or ellipsoidal, to be conformal. These are called the
Cauchy-Riemann equations after two 19th-century mathematicians. The concept
had been devised, however, during the 18th century. These equations may be
written as follows:

ax/aN = dy/oy (4—-33)
dxial = —aylaN (4-34)

w!\ere ¥ is the isometric latitude defined by equation (3—7) for the ellipsoid, or
with e = 0 in the same equation for the sphere. In the latter case, the above

equations simplify to

ax/(cos & IN) = dy/od (4—-35)
dx/dd = —ayl(cos ¢ aN) (4—36)

For the ellipsoid, equations (4—33) and (4—34) may be written
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axf(cos ¢ aN) = (1—e? sin? ) ay/[(1—e?) ad] 4-37
(1-¢€% sin?$)ax/[(1—eDad) = —ay/(cos b oN) (4-38)

By substituting x' in place of A and y' in place of ¢ in equations (4—33) and
(4-34), conditions are met for conformal transformation of one set of rectangular
coordinates (x’, y') to another (x, %). That is,

ax/ax’ = oyloy’ (4-39)
ax/oy’ = —ayldx’ (4—40)

In this case, if (a', y’) represents the transformation of the sphere or ellipsoid
onto a flat surface, this transformation must also be conformal. The double trans-
formation is used in a later chapter for the Modified-Stereographic Conformal
projections.

Analogous relationships may be obtained for equal-area transformations. The
following equation applies to the ellipsoid:

(ax/aN) (By/dd) — (ax/ad) (ay/an) = a® (1-¢°) cos d/(1—¢? sinb)®  (4—41)
For the sphere, this simplifies to
(dxfaN) (aylad) — (ax/ad) (ay/dN) = R® cos & (4-42)

For spherical pseudocylindrical equal-area projections, such as the sinusoidal, the
parallels are straight lines parallel to the Equator, so that (ay/ax) = 0. For the
many projections in this category, equation (4—42) simplifies further to

¥ = R2\ cos &/(dy/dd) (4—43)

in which y can be any function of ¢ for a chosen spacing of the parallels.
An equal-area transformation from one set of rectangular coordinates to another
must satisfy the following relationship:

(axlax') (oylay') — (axiay’) (ay/ox’) = § (4—44)

where S is the area ratio of the (x,y) map to the (', y’') map.

Most of the above equations (4 —33) through (4 —44) are difficult to use to derive
new projections, although they may be used to determine whether existing projec-
tions are conformal or equal-area. Equation (4—43), however, may be fairly read-
ily used to devise new projections which are pseudocylindrical and equal-area.
Equation (26-4), discussed later, is a general equation satisfying (4—39) and
(4—40). although it is not the only such equation. There is no known general
equation satisfving equation (4—44) except in a very elementary way.
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5. TRANSFORMATION OF MAP GRATICULES

As discussed later, several map projections have been adapted to showing some
part of the Earth for which the lines of Lrue scale have an orientation or location
different from that intended by the inventor of the basic projection. This is
equivalent to moving or transforming the graticule of meridians and parallels on
the Earth so that the “north pole” of the graticule assumes a position different
from that of the true North Pole of the Earth. The projection for the sphere may
be plotted using the original formulas or graphical construction, but applying
them to the new graticule orientation. The actual meridians and parallels may
then be plotted by noting their relationship on the sphere to the new graticule,
and landforms drawn with respect to the actual geographical coordinates as usual.

In effect, this procedure was used in the past in an often entirely graphical
manner. [t required considerable care to avoid cumulative errors resulting from
the double plotting of graticules. With computers and programmable hand
calculators, it now can be a relatively routine matter to calculate directly the
rectangular coordinates of the actual graticule in the translormed positions or,
with an automatic plotter, to obtain the transformed map directly from the
computer.

The transformation most notably has been applied to the azimuthal and cylindri-
cal projections, but in a few cuses it has been used with conie, pseudocylindrical.
and other projections. While it is faivly straightforward to apply a suitable trans-
formation to the sphere, transformation is much more difficult on the ellipsoid
because of the constantly changing curvature. Transformation has been applied to
the ellipsoid, however, in important cases under certain limiting conditions.

If either true pole is at the center of an azimuthal map projection, the projec-
tion is called the polar aspect. If a point on the Equator is made Lhe center, the
projection is called the equatorial or, less often, weeridicn or meridional aspect.
If some other point is central, the projection is the oblique or, occasionally,
horizon aspecet.

For cylindrical and most other projections, such translormations are called
transverse or obligue, depending on the angle of rotation. In transverse projections,
the true poles of the Earth lie on the equator of the basic projection, and the poles
of the projection lie on the Equator of the Earth. Therefore, one meridian of the
true Earth lies along the equator of the basic projection. The Transverse Mercu-
tor projection is the best-known example and is related to the regular Mercator in
this manner. For oblique cylindrical projections, the true poles of the Earth lie
somewhere between the poles and the equator of the basic projection. Stated
another way, the equator of the basic projection is drawn along xome great circle
route other than the Equator or 2 meridian of the Earth for the oblique evlindrical
aspect. The Oblique Mercator is the most common example. Further subdivisions
of these aspects have been made: for example, the transverse aspect may be first
transverse, second transverse, or transverse oblique, depending on the positions
of the true poles along the equator of the basic projection (Wray, 1974). This has
no significance in a transverse cvlindrical projection, since the appearance of the
map does not change, but for pseudocylindrical projections such as the Sinusoidal,
it makes a difference, il the additional nomenclature is desired.

To determine formulas (or the transtormation of the sphere, two basic laws of
sp‘herical trigonometry are used. Referring to the spherical triangle in figure 5,
with three points having angles A, R, and " on the sphere, and three great circle
ares a, b, and ¢ connecting them, the Law of Sines declares that

sin Asin e = sin Bain b = sin Cisin ¢ (-1

while by the Law of Closines,

29
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C N.Pote}

B(oA)

A (®4.2o)
FiutURE 5.—Spherical triangle.

cos ¢ = cos bcosa + sin b sina cos C (5-2)

If C is placed at the North Pole, it becomes the angle between two meridians
extending to A and B. If A is taken as the starting point on the sphere, and B the
second point, ¢ is the great circle distance between them, and angle A is the
azimuth Az east of north which point B bears to point A. When latitude ¢, and
longitude A, are used for point A, and ¢ and A are used for point B, equation (5~2)
becomes the following for great circle distance:

cos ¢ = sin &; sin & + cos by cos & cos (A—\g) (5-3)
While (5-3) is the standard and simplest form of this equation, it is not accu-
rate in practical computation for values of ¢ very close to zero. For such cases, the
equation may be rearranged as follows (Sinnott, 1984):
sin (¢/2) = sin*{(d—,)/2| + cos & cos ¢ sin? [(A—=A)2]]%  (5—3a)
This equation ix also exact, and is very accurate in practice for values of ¢ from 0
to nearly 180°.
Equation (5-1) becomes the following for the azimuth:
sin Az = sin (A—\,) cos &/sin ¢ (5—4)
or. with some rearrangement,
cos Az = [cos &, sin & — sin & cos & cos (A—Agy))/sin ¢ (5—-4a)
or, eliminating ¢,
tan Az = cos & sin (A—Xy)/[cos &, sin & — sin ¢, cos b cos (\—Ay)] (5—4b)
Either of the three equations (5—4) through (5—4b) may be used for the azimuth,
depending on the form of equation preferred. Equation (6—4b) is usually preferred,

since it avoids the inaccuracies of finding an arcsin near 90° or an arccos near 0°.
Quadrant adjustment as described under the list of symbols should be employed.
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¢'=-90°

FiGURE 6.—Rotation of a graticule for transformation of projection. Dashed lines show actual longi-
tudes and latitudes (A and ¢). Solid lines show the transformed longitudes and latitudes (A" and
&) from which rectangular coordinates (x and y) are determined according to map projection
used.

In order to find the latitude ¢ and longitude A at a given arc distance ¢ and
azimuth Az east of north from (d,, A,), the inverse of equations (5—3) and (5—4b)
may be used:

& = aresin (sin ¢, cos ¢ + cos &, sin ¢ cos Az) (A—H)

N = Ay + arctan [sin ¢ sin Az/(cos &, cos ¢ — sin &, sin ¢ cos Az)) (5-6)

Applying these relationships to transformations, without showing some inter-
mediate derivations, formulas (5~7) through (5—8b) are obtained. To place the
North Pole of the sphere at a latitude « on a meridian B east of the central merid-
ian (A’ =0) of the basic projection (see fig. 6), the transformed latitude ¢’ and
transformed longitude N' on the basic projection which correspond to latitude ¢
and longitude A of the spherical Earth may be calculated as follows, letting the
central meridian A, correspond with A" =f:

sin ¢’ = sin a sin & — co8 a cos & cos (A — Ay) 5-7)
sin (A" — B) = cos & sin (A — \y)/cos ¢’ (5-8)

or
cos (A" — B) = [sin a cos & cos (A — Ag) + cos « sin licos ¢’ (5—8a)

or

tan (A" = PB) = cos & sin (A = \))/[sin o cos ¢ cos (A — Ay) + cos a sin o]
(5—8b)
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Equation (5—8b) is generally preferable to (5—8) or (5—8a) for the reasons stated
after equation (5—4b).

These are general formulas for the oblique transformation. (For azimuthal pro-
jections, B may always be taken as zero. Other values of B merely have the effect
of rotating the X and Y axes without changing the projection.)

The inverse forms of these equations are similar in appearance. To find the
geographic coordinates in terms of the transformed coordinates,

sin ¢ = sinasind’ + cosacosd’ cos (A’ — ) (5-9)
sin (A — Ag) = cos &’ sin (A" — B)cos b (56—10)
or
cos (A — Ay) = [sin a cos &’ cos (A" — B) — cos a sin ¢’ J/cos (5--10a)
or

tan (A — \,) = cos &' sin (A’ — B)[sin a cos &' cos (A" — B) — cos asind’'] (5—10b)

with equation (5—10b) usually preferable to (5-10) and (5-10a) for the same
reasons as those given for (5—4b).

If « = 0, the formulas simplify considerably for the transverse or equatorial
aspects. It is then more convenient to have central meridian A, coincide with the
equator of the basic projection rather than with its meridian g. This may be
accomplished by replacing (A — Ay with (A = A, — 90°) and simplifying.

If 8 = 0, so that the true North Pole is placed at (A" = 0, ¢’ = 0):

sin ¢’ = —co8 ¢ sin (A — A (b~

cos A’ = sin d/[1 — cos? & sin*(A — A)]'2 (5-12)
or

tan N = — cos (A — Ay)tan ¢ (5—12a)

If B = 90°, placing the true North Pole at (\* = 90°, ¢’ = 0):

sin ' = — cos b sin (A — Ay (5—13)

cos A =cos ¢ cos (N — A1 ~ cos® b sin? (A — A (5—14)
or

tan A" = tan d/cos (A = A) (5—14a)

The inverse equations (5—9) through (5—10b) may be similarly altered.

As stated earlier, these formulas may be directly incorporated into the formu-
las for the rectangular coordinates » and y of the basic map projection for a direct
computer or calculator output. If only one or two projections are involved in a
package. this may be more efficient. For such transformations of several projec-
tions in one software package, it is often easier to calculate the transverse or
oblique projection coordinates by first calculating ¢’ and A’ for each point to be
plotted (using a general subroutine) and then calculating the rectangular coordi-
nates by inserting &' and A’ into the basic projection formulas. In still other cases,
a graphical method has been used.

While these formulas, or their equivalents, will be incorporated into the formu-
las given later for individual oblique and transverse projections, the concept
should help interrelate the various aspects or types of centers of a given projec-
tion. The extension of these concepts to the ellipsoid is much more involved tech-
nically and in some cases requires approximation. General dizcussion of this is
omitted here.
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6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS

Because of the hundreds of map projections already published and infinite num-
ber which are theoretically possible, considerable attention has been given to
classification of projections so that the user is not overwhelmed by the number:s
and the variety. Generally, the proposed systems classify projections on the basis
of property (equal-area, conformal, equidistant, azimuthal, and so forth), type
of construction (cylindrical, conical, azimuthal, and so forth), or both. Lee (1944)
proposed a combination:

Conical projections
Cylindric
Pseudocylindric
Conic
Pseudoconic
Polyconic
Azimuthal

Perspective
Nonperspective

Nonconical projections
Retroazimuthal (not discussed here)
Orthoapsidal (not discussed here)
Miscellaneous

Each of these categories was further subdivided into conformal, authalic (equal-
area), and aphylactic (neither conformal nor authalic), but some subdivisions have
no examples. This classification is partially used in this book, as the section head-
ings indicate, but the headings are influenced by the number of projections
described in each category: Pseudocylindrical projections are included with the
“miscellaneous” group, and “space map projections” are given a separate section.

Interest has been shown in some other forms of classification which are more
suitable for extensive treatises. In 1962, Waldo R. Tobler provided a simple but
all-inclusive proposal (Tobler. 1962). Tobler's classification involves eight cate-
gories, four for rectangular and four for polar coordinates. For the rectangular
coordinates, category A includes all projections in which both x and y vary with
both latitude ¢ and longitude A, category B includes all in which y varies with
both ¢ and A while x is only a function of A, C includes those projections in which
X varies with both ¢ and A while y varies only with ¢, and D is for those in which
xis only a function of A and y only of &. There are very few published projections
in category B, but C is usually called pseudocylindrical, D is cylindrical, and A
includes nearly all the rest which do not fit the polar coordinate categories.

Tobler's categories A to D for polar coordinates are respectively the same as
those for rectangular, except that radius p is read for y and angle 9 is read for .
The regular conic and azimuthal projections fall into category D, and the pseudo-
conical (such as Bonne's) into C. Category A may have a few projections like A
(rectangular) for which polar coordinates are more convenient than rectangular.
There are no well-known projections in B (polar).

Hans Maurer’s detailed map projection treatise of 1935 introduced a “Linnaean”
classification with five families (“true-circular,” “straight-symmetrical,” “curved-
symmetrical,” “less regular,” and “combination grids,” to quote a translation)
subdivided into branches, subbranches, classes, groups, and orders (Maurer,
1935). As Maling says, Maurer’s system “is only useful to the advanced student
of the subject,” but Maurer attempts for map projections what Linnaeus, the
Swedish botanist, accomplished for plants and animals in the 18th century (Maling,
1973, p. 98). Other approaches have been taken by Goussinsky (1951) and Starostin
(1981).
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SUGGESTED PROJECTIONS

Following is a simplified listing of suggested projections. The recommendation
can be directly applied in many cases, but other parameters such as the central
meridian and parallel or the standard parallels must also be determined. These
additional parameters are often chosen by estimation, but they can be chosen by
more refined methods to reduce distortion (Snyder, 1985a, p. 93—109). In other
cases a more complicated projection may be chosen because of special features
in the extent of the region being mapped; the GS50 projection (50-State map)
described in this book is an example. Some commonly used projections are not
listed in this summary because it is felt that other projections are more suitable
for the applications listed, which are not all-inclusive. Some of the projections
listed here are not discussed elsewhere in this book.

Region mapped
1. World (Earth should be treated as a sphere)
A. Conformal (gross area distortion)
(1) Constant scale along Equator
Mercator
(2) Constant scale along meridian
Transverse Mercator
(3) Constant scale along oblique great circle
Oblique Mercator
(4) Entire Earth shown
Lagrange
August
Eisenlohr
B. Equal-Area
(1) Standard without interruption
Hammer
Mollweide
Eckert IV or VI
McBryde or McBryde-Thomas variations
Boggs Eumorphic
Sinusoidal
misc. pseudocylindricals
(2) Interrupted for land or ocean
any of above except Hammer
Goode Homolosine
(3) Oblique aspect to group continents
Briesemeister
Oblique Mollweide
C. Equidistant
(1) Centered on pole
Polar Azimuthal Equidistant
(2) Centered on a city
Oblique Azimuthal Equidistant
D. Straight rhumb lines
Mercator
E. Compromise distortion
Miller Cylindrical
Robinson
2. Hemisphere (Earth should be treated as a sphere)
A. Conformal
Stereographic (any aspect)
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B. Equal-Area

Lambert Azimuthal Equal-Area (any aspect)
C. Equidistant

Azimuthal Equidistant (any aspect)
D. Global look

Orthographic (any aspect)

3. Continent, ocean, or smaller region (Earth should be treated as a sphere for
larger continents and oceans and as an ellipsoid for smaller regions, especially
at a larger scale)

A. Predominant east-west extent
(1) Along Equator
Conformal: Mercator
Equal-Area: Cylindrical Equal-Area
(2) Away from Equator
Conformal: Lambert Conformal Conic
Equal-Area: Albers Equal-Area Conic
B. Predominant north-south extent
Conformal: Transverse Mercator
Equal-Area: Transverse Cylindrical Equal-Area
C. Predominant oblique extent (for example: North America, South America,
Atlantic Ocean)
Conformal: Oblique Mercator
Equal-Area: Oblique Cylindrical Equal-Area
D. Equal extent in all directions (for example: Europe, Africa, Asia, Australia,
Antarctica, Pacific Ocean, Indian Ocean, Arctic Ocean, Antarctic Ocean)
(1) Center at pole
Conformal: Polar Stereographic
Equal-Area: Polar Lambert Azimuthal Equal-Area
(2) Center along Equator
Conformal: Equatorial Stereographic
Equal-Area: Equatorial Lambert
Azimuthal Equal-Area
(3) Center away from pole or Equator
Conformal: Oblique Stereographic
Equal-Area: Oblique Lambert
Azimuthal Equal-Area
E. Straight rhumb lines (principally for oceans)
Mercator
F. Straight great-circle routes
Gnomonic (for less than hemisphere)
G. Correct scale along meridians
(1) Center at pole
Polar Azimuthal Equidistant
(2) Center along Equator
Plate Carrée (Equidistant Cylindrical)
(3) Center away from pole or Equator
Equidistant Conic
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CYLINDRICAL MAP PROJECTIONS

CYLINDRICAL MAP PROJECTIONS

The map projection best known by name is certainly the Mercator—one of the
cylindricals. Perhaps easiest to draw, if simple tables are on hand, the regular
cylindrical projections consist of meridians which are equidistant parallel straight
lines, crossed at right angles by straight parallel lines of latitude, generally not
equidistant. Geometrically, cylindrical projections can be partially developed by
unrolling a cylinder which has been wrapped around a globe representing the
Earth, touching at the Equator, and on which meridians have been projected
from the center of the globe (fig. 1). The latitudes can also be perspectively pro-
jected onto the cylinder for some projections (such as the Cylindrical Equal-Area
and the Gall), but not on the Mercator and several others. When the cylinder is
wrapped around the globe in a different direction, so that it is no longer tangent
along the Equator, an oblique or transverse projection results, and neither the
meridians nor the parallels will generally be straight lines.
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7. MERCATOR PROJECTION
SUMMARY

e Cylindrical.

¢ Conformal.

e Meridians are equally spaced straight lines.

o Parallels are unequally spaced straight lines, closest near the Equator, cutting

meridians at right angles.

e Scale is true along the Equator, or along two parallels equidistant from the
Equator.

Loxodromes (rhumb lines) are straight lines.

Not perspective.

Poles are at infinity; great distortion of area in polar regions.

e Used for navigation.

e Presented by Mercator in 1569.

HHISTORY

The well-known Mercator projection was perhaps the first projection to be
regularly identified when atlases of over a century ago gradually began to name
projections used, a practice now fairly commonplace. While the projection was
apparently used by Erhard Etzlaub (1462—-1532) of Nuremberg on a small map
on the cover of some sundials constructed in 1511 and 1513, the principle remained
obscure until Gerardus Mercator (1512—-94) (fig. 7) independently developed it
and presented it in 1569 on a large world map of 21 sections totaling about 1.3 by
2 m (Keuning, 1955, p. 17--18).

Mercator, born at Rupelmonde in Flanders, was probably originally named
Gerhard Cremer (or Kremer), but he always used the latinized form. To his
contemporaries and to later scholars, he is better known for his skills in map and
globe making, for being the {irst to use the term “atlas” to describe a collection
of maps in a volume, for his calligraphy, and for first naming North America as
such on a map in 1538. To the world at large, his name is identified chiefly with
his projection, which he specifically developed to aid navigation. His 1569 map is
entitled “Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate
Accommodata (A new and enlarged description of the Earth with corrections for
use in navigation).” He described in Latin the nature of the projection in a large
panel covering much of his portrayal of North America:

*** In this mapping of the world we have [desired] to spread out the surface of the globe into a
plane that the places shall evervwhere be properly located, not only with respect to their true direc-
tion and distance, one from another. but also in accordance with their due longitude and latitude; and
further, that the shape of the lands, as they appear on the globe, shall be preserved as far as possible.
For this there was needed a new arrangement and placing of meridians, so that they shall hecome
paraliels, for the maps hitherto produced by geographers are, on account of the curving and the bend-
ing of the meridians, unsuitable for navigation * * *. Taking all this into consideration, we have some-
whal increased the degrees of latitude toward each pole, in proportion to the increase of the parallels
beyond the ratio they really have to the equator. (Fite and Freeman, 1926, p. 77-78.)

Mercator probably determined the spacing graphically, since tables of secants
had not been invented. Edward Wright (ca. 1558~ 1615) of England later devel-
oped the mathematics of the projection and in 1599 published tables of cumulative
secants, thereby indicating the spacing from the Equator (Keuning, 1955, p. 18).

FEATURES AND USAGE

The meridians of longitude of the Mercator projection are vertical parallel
equally spaced lines, cut at right angles by horizontal straight parallels which are



7. MERCATOR PROJECTION

IM1Gere 7.—Gerardus Mercator (1512 90, The inventor of the most famous map projection, which is
the pratotype for conformal mapping.

increasingly spaced toward each pole so that conformality exists (fig. 8. The
spacing of parallels at a given latitude on the sphere is proportional to the secant
of the latitude.

The major navigational feature of the projection is found in the fact that a
sailing route between (wo points is shown as a straight line, if the direction or
azimuth of the ship remains constant with respect to north. This kind of route is
called a loxodrome or rhumb line and is usually longer than the great cirele path
(which is the shortest possible route on the spheve). [Uis the same length as a
great cirele only if it follows the Equator or a meridian. The projection has been
standard since 1910 for nautical charts prepared by the former US. Coast and
Geodetic Survey (now National Ocean Scrvice) (Shalowilz, 1964, p. 302).

The great distortion of area on the Mercator projection of the Earth leads to
mistaken concepts when it is the chiel basis of world maps scen by students in
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7. MERCATOR PROJECTION

school. The classic comparison of areas is between Greenland and South America.
Greenland appears larger, although it is only one-eighth the size of South America.
Furthermore, the North and South Poles cannot be shown, since they are at
infinite distance from other parallels on the projection, giving a student an impres-
sion they are inaccessible (which of course they seemed to explorers long after the
time of Mercator). The last 50 years have seen an increased emphasis on the use
of other projections for world maps in published atlases.

Nevertheless, the Mercator projection is fundamental in the development of
map projections, especially those which are conformal. It remains a standard
navigational tool. It is also especially suitable for conformal maps of equatorial
regions. The USGS has recently used it as an inset of the Hawaiian Islands on the
1:500,000-scale base map of Hawaii, for a Bathymetric Map of the Northeast
Equatorial Pacific Ocean (although the projection is not stated) and for a Tectonic
Map of the Indonesia region, the latter two both in 1978 and at a scale of
1:5,000,000.

The first detailed map of an entire planet other than the Earth was issued in
1972 at a scale of 1:25,000,000 by the USGS Center of Astrogeology, Flagstaff,
Arizona, following imaging of Mars by Mariner 9. Maps of Mars at other scales
have followed. The mapping of the planet Mercury followed the flybys of Mariner
10 in 1974. Beginning in the late 1960’s, geology of the visible side of the Moon
was mapped by the USGS in quadrangle fashion at a seale of 1:1,000,000. The four
Galilean satellites of Jupiter and several satellites of Saturn were mapped follow-
ing the Voyager missions of 1979—81. For all these bodies, the Mercator projec-
tion has been used to map equatorial portions, but coverage extended in some
early cases to lats. 65° N. and 8. (table 6).

The cloudy atmosphere of Venus, circled by the Pioneer Venus Orbiter begin-
ning in late 1978, is delaying more precise mapping of that planet, but the Merca-
tor projection alone was used to show altitudes based on radar reflectivity over
about 93 percent of the surface.

FORMULAS FOR THE SPHERE

There is no suitable geometrical construction of the Mercator projection. For
the sphere, the formulas for rectangular coordinates are as follows:

r=R (N -\ (7-1)
y=RIntan (n/4 + ¢/2) (7-2)

or
y = (R/2) [In ((1 + sin )AL — sin ¢))] (7—2a)

where R is the radius of the sphere at the scale of the map as drawn, and ¢ and A
are given in radians. There are also several other forms in which equation (7-2)
may be written, such as y = R aresinh (tan ¢) = R arctanh (sin $) = R In (tan
¢ + sec ¢). The X axis lies along the Equator, x increasing easterly. The Y axis
lies along the central meridian Ao, ¥ increasing northerly. If (A — A,) lies outside
the range * 180°, 360° should be added or subtracted so it will fall inside the
range. To use ¢ and A in degrees,

T =1 R (N—=A°)/180° (7-1a)
¥ =R Intan 45° + ¢°2) (7-2b)

Not'e that if ¢ is = w/2 or = 90°, y is infinite. For scale factors, application of
equa'tlons (4-2), (4-3), and (4-9) to (7-1) and (7-2) or (7—2a) gives results
consistent with the conformal feature of the Mercator projection:
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TABLE 6.—Map projections used for extraterrestrial mapping

{From Batson, private commun., 1985]

Map format

Map format
Body® Scale (see below)? Body' Scale (Bee below)®
Moon 1:5,000,000 F Galilean satellites of Jupiter
1:2,000,000 K
1:1,000,000 K Io } 1:25,000,000 A-1
Mercury 1:16,000,000 A-1 Europa 1:15,000,000 A-1
1:5,000,000 E-1 1:5,000,000 F
Venus 1:50,000,000 A-1 1:2,000,000 K
1:25,000,000 B-1 Ganymede } 1:25,000,000 A-1
1:15,000,000 C Callisto 1:15,000,000 B-1
1:5,000,000 G 1:5,000,000 E-2
Mars 1:25,000,000 A-2 1:2,000,000 J
1:15,000.000 B-2
15,000,000 D Satellites of Saturn
1:2,000,000 H
1:500,000 L Mimas 1:2,000,000 A-1
Enceladus }
Satellite of Uranus Miranda
Arie] 1:10,000,000 A-1 Tethys 1:10,000,000 A-1
1:5,000,000 B-1 Dione ' 1:5,000,000 A-1
Rhea 1:10,000,000 A-1
Satellite of Neptune 1:5,000,000 B-1
Triton (see Ganymede) lapetus 1:10,000,000 A-1
TABLE 6.—Map projections used for extraterrestrial mapping - Continued
Matching parallel Quadrangle size Std. Parallels
Map format® Lat. range Projection® Scale Faclor al Lat. N&S? Scale factor at Lat. N&S Long. x Lat. Lat., Lat.
A-1 57°S-5TN°  MER 1.0000 o 17883 66° 360° 114
55° to pole PS 1.6354 90 1.7883 56 360 35
A-2 5TS-5TN® MER 1.0000 0 1.9922 60 360 114°
£5° to pole PS 1.8589 90 1.9922 60 360 35
B-1 BT"S-567T°N MER 1.0000 0 1.7883 56 180 114
55° to pole PS 1.6354 90 1.7883 56 360 35
B-2¢ 5T°S-5TN MER 1.0000 0 1.7819 56 180 114
55°to pole PS 1.6298 90 1.7819 56 360 35
C BT S—-5T°N MER 1.0000 0 1.7883 56 120 57
65° to pole PS 1.6354 90 1.7883 56 360 35
D! 30°S-30°N MER 1.0000 ] 1.1532 30 45 30
30°-65"N&S LCC 1.1259 SpP 1.1532 30 60 35 35.83°, 59.17°
1.1611 65
65° to pole PS 1.1067 90 1.1611 65 360 25
E-1 22°8-22°N’ MER 1.0000 0 1.0824 22.5 72 4’
21°—66°N&S* LCC 1.0494 Sp 1.0824 22.5 90 45" 28°, 62°
1.0946 67.5
65° to pole PS 1.0529 90 1.0946 67.5 360 25
E-2 22°S-22°N MER 1.0000 13 1.0461 21,34 72 4
21°~66°N&S LCC 1.0000 SP 1.0461 21.34 90 45 30°, 58°
1.0484 66.19
66° to pole PS 1.0000 90 1.0484 65.19 360 25
F 50°S-50°N MER 1.0000 34.08 1.1716 45 180 100
45° Lo pole PS 1.0000 90 1.1716 46 360 45
G 25°85-25°N MER 1.0000 15.90 1.0612 26 40 25
25°-75°N&S LCC 1.0000 Sp 1.0612 25 30 25 34°, 73°
(below 50° lat.)
1.0179 %5 60 25

(above 50° laL.)
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TABLE 6.—Map projections used for extraterrestrial mapping—Continued

43

(above 87.5° lat.)

Matching parallel Quadrangle size Std. Parallels
Map format? Lat. range Projection® Scale Factor at Lat. N&S? Scale factor at Lat. N&S Long. x Lat. Lat., Lat.
75° to pole PS 1.0000 90 1.0179 % 360 15
H* 30°S—-30°N MER 1.0000 27.476 1.0243 30 22,56 15
30°-65°N&S LCC 1.0000 Sp 1.0243 30 22.5 17.5 36.83°, 59.17°
(below 47.5° lat.)
1.0313 65 30 17.6
(above 47.5° lat.)
65° to pole PS 0.9830 90 1.0313 65 45 12.5
(below 77.5° lat.)
180 12.5
(above 77.5° lat.)
J 22°5-22°N MER 1.0000 13 1.0461 21.34 36 22
21°-66°N&S LCC 1.0000 Sp 1.0461 21.34 30 22.5 30°, 58°
(below 43.5° lat.)
1.0484 65.19 45 22.5
(above 43.5° lat.)
65° to pole PS 1.0000 90 1.0484 65.19 90 17.5
(below 82.5° lat.)
360 15
(above B2.5° lat.)
K 16°S—16°N MER 1.0000 11.012 1.0211 16 40 32°
16°~-48°N&S LCC 1.0000 SP 1.0211 16 45 32 21.33°, 42.67°
48°-80°N&S Lce 1.0000 SpP none 72 3z 53.33°, 74.67°
80° to pole PS 1.0000 90 none 360 10
L! 82.5°S-82.5°N TM' 0.9960 CM none 5 5
(below 47.5° lat.)
6.67 5
(above 47.5° lat.)
82.5° to pole PS 1.0000 87.5 none 40 5
(below 87.5° lat.)
360 2.5

Notes: ! Taken as sphere. except for Mars (ellipsoid, cccentricity = 0.101929).
Orthographic projection used for irregular gatellites of Mars (Phobos and Deimos), of Jupiter (Amalthea), and Saturn (Hyperion).
Lambert Azimuthal Equal-Area projection used in polar and equalorial aspecta for full hemispheres of several planete and satellites.
Oblique Stereographic projection used for basins and other regions of Mars, Moon, etc.

£ Official format designations use only the lelter. Numbers have been added for convenience in this table.
* Abbreviations: MER = Mercator, PS = Polar Sterengraphic, LCC = Lambert Conformal Conic, TM = Transverse Mercator, SP = Standard Parallels.
! Scule factors based on Mars ellipsoid.
* Venus 1:50,000,000 originally 65°S. 10 78°N. Mercator with no polar continuation.
“ Originally 65°S.~65°N., 130° lat, quad range.
' Originully 25°S.~25°N., 60° lat. quad range.

" Originally 20°-70°N.&S., 50° lat. quad range.

¥ For Moon 1:1,000,000, quads are 20° long. x 16° Ial.

' Zones are 20° long. x 75° lat.
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h=k = secd = llcos ¢ (7-3)
w=0

Normally, for conformal projections, the use of h (the scale factor along a
meridian) is omitted, and k (the scale factor along a parallel) is used for the scale
factor in any direction. The areal scale factor for conformal projections is &* or
sec® ¢ for the Mercator in spherical form.

The inverse formulas for the sphere, to obtain ¢ and A from rectangular coordi-
nates, are as follows:

& =7/2 — 2 arctan (e~ ¥/R) (7-4)
or
¢ =arctan[sinh(y/R)] (7—4a)
=a2/R + A (7-5)
Here e = 2.7182818 . . . , the base of natural logarithms, not eccentricity. These

and subsequent formulas are given only in radians, as stated earlier, unless the
degree symbol is used. Numerical examples (see p.266) are given in degrees,
showing conversion.

FORMULAS FOR THE ELLIPSOID

For the ellipsoid, the corresponding equations for the Mercator are only a little
more involved (see p. 267 for numerical example):

x = alA—X\gp) (7-6)

1—esind \°2
y =aln | tan(w/4 + &/2) | —— (7-7)
1+esin ¢

1 + sind 1 - esindy
y=(a/2)n ( > < )
1 — sin ¢ 1+ esind (7—Ta)

where a is the equatorial radius of the ellipsoid, and e is its eccentricity. Compar-
ing equation (3—7), it is seen that y = ad. From equations (4—22) and (4—23), it
may be found that

or

h =k = (1-¢* sin® ¢)' %cos ¢ (7-8)

and of course w = 0. The areal scale factor is k2. The derivation of these equations
is shown in Thomas (1952, p. 1, 2, 85~-90).

The X and Y axes are oriented as they are for the spherical formulas, and
(N = Ap) should be similarly adjusted. Thomas also provides a series equivalent
to equation (7-7), slightly modified here for consistency:

ya = Intan (n/d+&/2) — (2 +eVd+e8+ .. ) sin b
+ (€12 + Y16 + .. )sin3d — (%80 + .. )sinbd + ... (7-Tb)

The inverse formulas for the ellipsoid require rapidly converging iteration, if
the closed forms of the equations for finding ¢ are used:

& = w/2-2 arctan t[(1—e sin &)/(1+ e sin ¢)} @ (7-9)
where

t = ey (1-10)
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TABLE 7.—Mercator projection: Rectangular coordinates

Latitude Sphere (R=1) Clarke 1866 ellipsoid (a=1)
(¢) y k y k
90° Infinite Infinite Infinite Infinite
86 3.13130 11.47371 3.12454 11.43511
80 2.43625 5.75877 2.42957 5.73984
75 2.02759 3.86370 2.02104 3.85148
0 1.73542 2.92380 1.72904 2.91505
65 1.50645 2.36620 1.50031 2.35961
60 __ 1.31696 2.00000 1.31109 1.99492
55 1.15423 1.74345 1.14868 1.73948
50 1.01068 1.55572 1.00549 1.55263
45 . .88137 1.41421 87658 1.41182
0 76291 1.30541 75855 1.30358
35 .65284 1.22077 .64895 1.21941
30 . 54931 1.15470 54592 1.16372
25 .45088 1.10338 .44801 1.10271
20 .35638 1.06418 .35406 1.06376
15 26484 1.03528 .26309 1.03504
100 17543 1.01543 17425 1.01532
S .08738 1.00382 08679 1.00379
0 .00000 1.00000 00000 1.00000
z 0.017453 (A-xo) 0.017453 (A- o)

Note: r, y = rectangular coordinates.
& = geodetic latitude.
(A—hy) = geodetic longitude, messured east from origin in degrees.
k= scale factor. relative to scale at Equator.
R = radius of sphere at scale of map.
a = equatorial radius of ellipsoid at scale of map.
If latitude is negative (south), reverse sign of y.

e is the base of natural logarithms, 2.71828 . . . .

and the first trial ¢ = w/2—2 arctan ¢ (7-11)

Inserting the first trial ¢ in the right side of equation (7-9), ¢ on the left side is

calculated. This becomes the new trial &, which is used on the right side. The

process is repeated until the change in & is less than a chosen convergence factor

depending on the accuracy desired. This ¢ is then the final value. For A,

A= rx/a + X, (71-12)

The scale factor is calculated from equation (7-8), using the calculated 4.

To avoid the iteration, the series (3—5) may be used with (7-13) in place of

(7-9):

b = x + (¢%2 + 5e'24 + %12 + 13¢360 + . . ) sin 2x + (Te*/48 + 29¢%/240 +
811¢"11520 + . . .) sin 4x + (7¢%120 + 811120 + . . .) sin 6y +
(4279¢/161280 + .. ) sin 8y + . . . (3-5)

where

X = 7w/2-2 arctan ¢ (T—13)
For improved computational efficiency using the series, see p- 19.

Rectangular coordinates for each 5° of latitude are givenin table 7, for both the
sphere and the Clarke 1866 ellipsoid, assuming R and a are both 1.0. It should be
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noted that k for the sphere applies only to the sphere. The spherical projection is
not conformal with respect to the ellipsoidal Earth, although the variation is
negligible for a map with an equatorial scale of 1:15,000,000 or smaller. It should
be noted that any central meridian can be chosen as \, for an existing Mercator
map, if forward or inverse formulas are to be used for conversions.

MEASUREMENT OF RHUMB LINES

Since a major feature of the Mercator projection is the straight portrayal of
rhumb lines, formulas are given below to determine their true lengths and
azimuths. If a straight line on the map connects two points with respective lati-
tudes and longitudes (db,. Ay) and (b2, Ap), the respective rectangular coordinates
(rq, 1) and ey, i) are calculated using equations (7—1) and (7—2) for the sphere
or (7-6) and (7—7) for the ellipsoid, inserting the respective subscripts.

For the true (not magnetic) compass bearing or azimuth Az clockwise from
north along the rhumb line,

Az = arctan [(ry—x )/ (ys—y)] (7-14)
Transposing and using forward and inverse equations for the Mercator, latitude
or longitude along the rhumb line may be found for a given longitude or latitude,
respectively, knowing the initial point and the azimuth. For example,

Yo = Yy + (¥, — x))tan Az (7-15)
in which (v, y,) are calculated for (b, A}) from (7—6) and (7—7), x, is calculated
from A, from (7-06), and ¢, is calculated from y, using (7—9) and (7-10).

For the true distance s along the rhumb line from ¢, to .,
s = (M,—M,)cos Az (7-16)
where M., and M|, the distances from the Equator along the meridian, are found

for ¢, and &,, respectively, using equation (3—21) and the same subscripts on M
and &:

M = al(1-¢*4-3e'/64-5c%256— . . .) &b— (3e%/8 + 3e*/32
+ 45671024 + .. .) sin 2 + (15€%/256 + 45€°/1024 + . . .)
sin 4 — (35073072 + .. ) sin6d + . . ] (3-21)

but if ¢, = ¢, equation (7—16) is indeterminate and
s = alhs—N;) cos b/(1—e’sin’d)* (7-17)
For the true distance s from initial latitude ¢, to latitude ¢, equation (7-16)
may be used with M instead of M,. To find (é,A) corresponding to a given distance
s from (&,. A,) along the rhumb line, (7—16) may be inverted to give:

M = scos Az + M, (7—-18)

If Az = 90° or 270°, & = &, and equation (7-20) is indeterminate, but A may be
found by transposing (7-17). using negative s for Az = 270°,
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M may be converted to ¢ using (3—26),

b = p + (3¢,/2—27¢,%32 + .. .) sin 2u + (21e,%/16—55¢,/32 + .. )

sin 4 + (151¢,%96— . . .) sin 6p + (1097¢,*/512— . . ) sin 8u + . ..
(3—-26)
where
e, = [1-(1-e%")[1+(1—€®)") (3—24)
and, in a rearrangement of (3—20) and (3—21),
p = Mia (1-e%/4—3¢*/64—5¢5/256— . . )] (7-19)

Then for longitude A, rearranging (7—6), (7—7), and (7—14),

—esi 2
A=A + tan Az In[tan (/4 + o/2) <l_f_s‘ﬂ)e —-ylla} (7-20)
l+esind

MERCATOR PROJECTION WITH ANOTHER STANDARD PARALLEL

The above formulas are based on making the Equator of the Earth true to scale
on the map. Thus, the Equator may be called the standard parallel. It is also
possible to have, instead, another parallel (actually two) as standard, with true
scale. For the Mercator, the map will look exactly the same; only the scale will be
different. If latitude &, is made standard (the opposite latitude —d&, is also
standard), the above forward formulas are adapted by multiplying the right side
of equations (7—1) through (7—3) for the sphere, including the alternate forms,
by cos ¢,. For the ellipsoid, the right sides of equations (7—6), (7—7), (7—8), and
(7-7Ta) are multiplied by cos ¢,/(1—e® sin® $,)'2. For inverse equations, divide x
and y by the same values before use in equations (7—4) and (7—5) or (7—10) and
(7—12). Such a projection is most commonly used for a navigational map of part
of an ocean, such as the North Atlantic Ocean, but the USGS has used it for
equatorial quadrangles of some extraterrestrial bodies as described in table 6.
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8. TRANSVERSE MERCATOR PROJECTION
SUMMARY

Cylindrical (transverse).

o Conformal.

o Central meridian, each meridian 90° from central meridian, and Equator are
straight lines.

e Other meridians and parallels are complex curves.

e Scale is true along central meridian, or along two straight lines equidistant
from and parallel to central meridian. (These lines are only approximately
straight for the ellipsoid.)

e Scale becomes infinite on sphere 90° from central meridian.

o Used extensively for quadrangle maps at scales from 1:24,000 to 1:250,000.

e Presented by Lambert in 1772.

HISTORY

Since the regular Mercator projection has little error close to the Equator (the
scale 10° away is only 1.5 percent larger than the scale at the Equator), it has been
found very useful in the transverse form, with the equator of the projection
rotated 90° to coincide with the desired central meridian. This is equivalent to
wrapping the cylinder around a sphere or ellipsoid representing the Earth so that
it touches the central meridian throughout its length, instead of following the
Equator of the Earth. The central meridian can then be made true to scale, no
matter how far north and south the map extends, and regions near it are mapped
with low distortion. Like the regular Mercator, the map is conformal.

The Transverse Mercator projection in its spherical form was invented by the
prolific Alsatian mathematician and cartographer Johann Heinrich Lambert
(1728-77) (fig. 9). It was the third of seven new projections which he described
in 1772 in his classic Beitrige (Lambert, 1772). At the same time, he also de-
seribed what are now called the Cylindrical Equal-Area, the Lambert Conformal
Conic, and the Lambert Azimuthal Equal-Area, each of which will be discussed
subsequently; others are omitted here. He described the Transverse Mercator
as a conformal adaptation of the Sinusoidal projection, then commonly in use
(Lambert, 1772, p. 57-58). Lambert’s derivation was followed with a table of
coordinates and a map of the Americas drawn according to the projection.

Little use has been made of the Transverse Mercator for single maps of
continental areas. While Lambert only indirectly discussed its ellipsoidal form,
mathematician Carl Friedrich Gauss (1777 - 1855) analyzed it further in 1822, and
L. Kriiger published studies in 1912 and 1919 providing formulas suitable for
calculation relative to the ellipsoid. It is, therefore, sometimes called the Gauss
Conformal or the Gauss-Kriiger projection in Europe, but Transverse Mercator,
a term first applied by the French map projection compiler Germain, is the name
normally used in the United States (Thomas, 1952, p. 91-92; Germain, 18657, p.
347).

Until recently, the Transverse Mercator projection was not precisely applied to
the ellipsoid for the entire Earth. Ellipsoidai formulas were limited to series for
relatively narrow bands. In 1945, E. H. Thompson (and in 1962, L. P. Lee)
presented exact or closed formulas permitting calculation of coordinates for the
full ellipsoid. although elliptic functions, and therefore lengthy series, numerical
integrations, and (or) iterations, are involved (Lee, 1976, p. 9Y2-101; Snyder,
1979a, p. 73; Dozier, 1980).

The formulas for the complete ellipsoid are interesting academically, but they
are practical only within a band between 4° of longitude and some 10° to 15° of arc
distance on either side of the central meridian, because of the much more signifi-
cant scale errors fundamental to any projection covering a larger area.
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I16URE 9.—Johann Heinrich Lambert (172%—77). Inventor of the Transverse Mercator, the Confor-
mal Conie, the Azimuthal Equal-Area, and other important projections, as well as outstanding
developments in mathematics. astronomy. and physies.

FEATURES

The meridians and parallels of the Transverse Mercator (fig. 19) are no longer
the straight lines they are on the regular Mercator, except for the Earth’s Equator,
the central meridian, and each meridian 90° away from the central meridian.
Other meridians and parallels are complex curves.

The spherical form is conformal, as is the parent projection, and scale error is
only a function of the distance from the central meridian, just as it is only a
function of the distance from the Equator on the regular Mercator. The ellipsoidal
form is also exactly conformal, but its scale error is slightly affected by factors
other than the distance alone from the central meridian (Lee, 1976, p. 98).
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T T

FIGURE 10.—The Transverse Mercator projection. While the regular Mercator has constant acale along the Equator, the Tranaverse Mercator has
constant scale along any chosen central meridian. This projection is conformal and is often used to show regions with greater north-south
extent.
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The scale along the central meridian may be made true to scale, or deliberately
reduced to a slightly smaller constant scale so that the mean scale of the entire
map is more nearly correct. There are also forms of the ellipsoidal Transverse
Mercator on which the central meridian is not held at a constant scale, but these
forms are not used in practice (Lee, 1976, p. 100—101). If the central meridian is
mapped at a reduced scale, two straight lines parallel to it and equally spaced
from it, one on either side, become true to scale on the sphere. These lines are not
perfectly straight on the ellipsoidal form.

With the scale along the central meridian remaining constant, the Transverse
Mercator is an excellent projection for lands extending predominantly north and
south.

USAGE

The Transverse Mercator projection (spherical or ellipsoidal) was not described
by Close and Clarke in their generally detailed article in the 1911 Encyclopaedia
Britannica because it was “seldom used” (Close and Clarke, 1911, p. 663). Deetz
and Adams (1934) favorably referred to it several times, but as a slightly used
projection.

The spherical form of the Transverse Mercator has been used by the USGS
only recently. In 1979, this projection was chosen for a base map of North Amer-
ica at a scale of 1:5,000,000 to replace the Bipolar Oblique Conic Conformal
projection previously used for tectonic and other geologic maps. The scale factor
along the central meridian, long. 100° W., is reduced to 0.926. The radius of the
Earth is taken at 6,371,204 m, with approximately the same surface area as the
International ellipsoid, placing the two straight lines of true design scale 2,343 km
on each side of the central meridian.

While its use in the spherical form is limited, the ellipsoidal form of the Trans-
verse Mercator is probably used more than any other one projection for geodetic
mapping.

In the United States, it is the projection used in the State Plane Coordinate
System (SPCS) for States with predominant north-south extent. (The Lambert
Conformal Conic is used for the others, except for the panhandle of Alaska, which
is prepared on the Oblique Mercator. Alaska, Florida, and New York use both the
Transverse Mercator and the Lambert Conformal Conic for different zones.)
Except for narrow States, such as Delaware, New Hampshire, and New Jersey,
all States using the Transverse Mercator are divided into two to eight zones, each
with its own central meridian, along which the scale is slightly reduced to balance
the scale throughout the map. Each zone is designed to maintain scale distortion
within 1 part in 10,000. Several States beginning in 1935 also passed legislation
establishing the SPCS as a permissible system for recording boundary descrip-
tions or point locations. Several zone changes have occurred for use with the new
1983 datum. They are listed in Appendix C.

In addition to latitude and longitude as the basic frame of reference, the corre-
sponding rectangular grid coordinates in feet are used to designate locations
(Mitchell and Simmons, 1945). The parameters for each State are given in table 8.
All are based on the Clarke 1866 ellipsoid. It is important to note that, for the
metric conversion to feet using this coordinate system, 1 m equals exactly 39.37
in., not the current standard accepted by the National Bureau of Standards in
1959, in which 1 in. equals exactly 2.54 e¢m. Surveyors continue to follow the
former conversion for consistency. The difference is only two parts in a million,
but it is enough to cause confusion, if it is not accounted for.

Beginning with the late 1950’s, the Transverse Mercator projection was used
by the USGS for nearly all new quadrangles (maps normally bounded by meridi-
ans and parallels) covering those States using the TM Plane Coordinates. but the
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TABLE 8.—U.S. State plane coordinate systems

(T indicates Tranaverse Mercator; L, Lambert Conformal Conic: H, Hotine Oblique Mercator. Maodified slightly and updated from
Milchell and Simmons, 1945, p. 45-47]

Area Projection  Zones Area Projection  Zones
Alabama ________ T 2 Montana ________ L 3
Alaska __________ T 8 Nebraska ________ L 2

L 1 Nevada _________ T 3
H 1 New Hampshire __ T 1
Arizona _________ T 3 New Jersey ______ T 1
Arkansas ________ L 2 New Mexico ______ T 3
California _______ L 7 New York ____.__ T 3
Colorado ________ L 3 L 1
Connecticut ______ L 1 North Carolina ___ L 1
Delaware ________ T 1 North Dakota ____ L 2
Florida __________ T 2 Ohio oo __ L 2
L 1 Oklahoma _______ L 2
Georgia ____._____ T 2 Oregon ____..____ L 2
Hawaii __________ T 5 Pennsylvania _____ L 2
Idaho ________..__ T 3 Puerto Rico &
Ilinois __________ T 2 Virgin Islands __ L 2
Indiana _________ T 2 Rhode Island _____ T 1
Towa .___________ L 2 Samoa . _____ L 1
Kansas _._________ L 2 South Carolina ___ L 2
Kentucky ________ L 2 South Dakota ____ L 2
Louisiana ________ L 3 Tennessee — _____ L 1
Maine ___________ T 2 Texas o __ L 5
Maryland ________ L 1 Utah L 3
Massachusetts ____ L 2 Vermont _______ T 1
Michigan! Virginia _________ L 2
obsolete _______ T 3 Washingt,on ______ L 2
current ________ L 3 West Virginia ____ L 2
Minnesota _._____ L 3 Wisconsin _______ L 3
Mississippi —______ T 2 Wyoming _____ B T 4
Missouri _________ T 3
Transverse Mercator projection
Zone Central meridian Scale reduction? Origin® (latitude)
Alabama
East _______ 85°50 W 1:25,000 30°30' N.
West _______ 87 30 1:15,000 30 00
Alaska‘
2 142 00 1:10,000 54 00
S 146 00 1:10,000 54 00
4 150 00 1:10,000 54 00
L 154 00 1:10,000 54 00
6 e~ 158 00 1:10,000 54 00
T oo~ 162 00 1:10,000 54 00
8 166 00 1:10,000 54 00
9 170 00 1:10,000 54 00
Arizona
East _______ 110 10 1:10,000 31 00
Central _____ 111 55 1:10,000 31 00
West _______ 113 45 1:15,000 31 00
Delaware ______ 75 25 1:200,000 38 00
Florida*
East _______ 81 00 1:17,000 24 20
West _______ 82 00 1:17,000 24 20
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TABLE 8.—U.S. State plane coordinate systems—Continued

Transverse Mercator projection - Continued

Zone Central meridian Scale reduction? Origin?® (latitude)

Georgia °

East _______ 82°10 W. 1:10,000 30°00° N.

West _______ 84 10 1:10,000 30 00
Hawaii

1o 155 30 1:30,000 18 50

2 156 40 1:30,000 20 20

8 158 00 1:100,000 21 10

4o 159 30 1:100,000 21 50

5 160 10 0 21 40
Idaho

East _______ 112 10 1:19,000 41 40

Central _____ 114 00 1:19,000 41 40

West _______ 'i5 45 1:15,000 41 40
Illinois

East _______ 88 20 1:40,000 36 40

West _______ 90 10 1:17,000 36 40
Indiana

East _______ 85 40 1:30,000 37 30

West _______ 87 05 1:30,000 37 30
Maine

East _______ 68 30 1:10,000 43 50

West _______ 70 10 1:30,000 42 50
Michigan (old)*

East _______ 83 40 1:17,600 41 30

Central _____ 85 45 1:11,000 41 30

West _______ 88 45 1:11,000 41 30
Mississippi

East _______ 88 50 1:25,000 29 40

West _______ 90 20 1:17,000 30 30
Missouri

East _______ 90 30 1:15,000 35 50

Central _____ 92 30 1:15,000 35 50

West _______ 94 30 1:17,000 36 10
Nevada

East _______ 116 35 1:10,000 34 45

Central _____ 116 40 1:10,000 34 45

West _______ 118 35 1:10,000 34 45
New Hampshire _ 71 40 1:30,000 42 30
New Jersey _____ 74 40 1:40,000 38 50
New Mexico

East _______ 104 20 1:11,000 31 00

Central _____ 106 15 1:10,000 31 00

West _______ 107 50 1:12,000 31 00
New York*

East _______ 74 20 1:30,000 40 00

Central _____ 76 35 1:16,000 40 00

West _______ 78 35 1:16,000 40 00
Rhode Istand ____ 71 30 1:160,000 41 05
Vermont _______ 72 30 1:28,000 42 30
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TABLE 8.—U.S. State plane coordinate systems—Continued

Transverse Mercator projection — Continued

Zone Central meridian Scale reduction® Origin® (latitude)

Wyoming

East _______ 105°10' W. 1:17,000 40°40 N.

East Central 107 20 1:17,000 40 40

West Central 108 45 1:17,000 40 40

West _______ 110 05 1:17,000 40 40

Lambert Conformal Conic projection
Origin®
Zone Standard parallels Long. Lat.

Alaska*

10 . __ 51°50' N 53°50' N. 176°00 W5 51°00’ N.
Arkansas

North _________ 34 56 36 14 92 00 34 20

South _________ 33 18 34 46 92 00 32 40
California

| O 40 00 41 40 122 00 39 20

|| 38 20 39 50 122 00 37 40

m. 37 04 38 26 120 30 36 30

|, 36 00 37 15 119 00 35 20

Voo . 34 02 35 28 118 00 33 30

VI ___ 32 47 33 53 116 15 32 10

') | 33 52 34 25 118 20 34 08%
Colorado

North _________ 39 43 40 47 105 30 39 20

Central ________ 38 27 39 45 105 30 37 50

South _________ 37 14 38 26 105 30 36 40
Connecticut _______ 41 12 41 52 72 45 40 50%
Florida®*

North _________ 29 35 30 45 84 30 29 00
lowa

North _________ 42 04 43 16 93 30 41 30

South _________ 40 37 41 47 93 30 40 00
Kansas

North _________ 38 43 39 47 98 00 38 20

South _________ 37 16 38 34 98 30 36 40
Kentucky

North _________ 37 58 38 58 84 15 37 30

South _________ 36 44 37 5K 85 45 36 20
Louisiana

North _________ 31 10 32 40 92 30 30 40

South _________ 29 18 30 42 91 20 28 40

Offshore ____.___ 26 10 27 50 91 20 25 40
Maryland _________ 38 18 39 27 77 00 37 505¢
Massachusetts

Mainland ______ 41 43 42 41 71 30 41 00™

Island _________ 41 17 41 29 70 30 41 00°°
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TaBLE 8.—U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection— Continued

Origin®
Zone Standard parallels Long. Lat.
Michigan (current)!

North .________ 45°29 N. 47°05' N. 87°00 W. 44°47

Central ________ 44 11 45 42 84 20 43 19

South _________ 42 06 43 40 84 20 41 30
Minnesota

North _________ 47 02 48 38 93 06 46 30

Central ________ 45 37 47 03 94 15 45 00

South _________ 43 47 45 13 94 00 43 00
Montana

North _________ 47 51 48 43 109 30 47 00

Central ________ 46 27 47 53 109 30 45 50

South _________ 44 52 46 24 109 30 44 00
Nebraska

North _________ 41 51 42 49 100 00 41 20

South _________ 40 17 41 43 99 30 39 40
New York!

Long Island ____ 40 40 41 02 74 00 40 30%
North Carolina _____ 34 20 36 10 79 00 33 45
North Dakota

North _________ 47 26 48 44 100 30 47 00

South _________ 46 11 47 29 100 30 45 40
Ohio

North _________ 40 26 41 42 82 30 39 40

South _________ 38 44 40 02 82 30 38 00
Oklahoma

North _________ 35 34 36 46 98 00 35 00

South _________ 33 56 35 14 98 00 33 20
Oregon

North _________ 44 20 46 00 120 30 43 40

South _________ 42 20 44 00 120 30 41 40
Pennsylvania

North _________ 40 53 41 57 77 45 40 10

South _________ 39 56 40 58 77 45 39 20
Puerto Rico and

Virgin Islands

) 18 02 18 26 66 26 17 50%

2(St.Croix) ____ 18 02 18 26 66 26 17 507 ¢
Samoa ____________ 14°16' S. (single) 170 00 ——
South Carolina

North _________ 33°46' N. 34 58 81 00 33 00

South _________ 32 20 33 40 81 00 31 50
South Dakota

North _________ 44 25 45 41 100 00 43 50

South _________ 42 50 44 24 100 20 42 20

Tennessee ________ 35 15 36 25 86 00 34 405
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TaBLE 8.—U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection - Continued

izin®
Zone Standard parallels Long. Origin Lat.

Texas

North _________ 34°39' N. 36°11' N. 101°30° W. 34°00' N.

North central .__ 32 08 33 58 97 30 31 40

Central ________ 30 07 31 53 100 20 29 40

South central ___ 28 23 30 17 99 00 27 50

South _________ 26 10 27 50 98 30 25 40
Utah

North _________ 40 43 41 47 111 30 40 20

Central ________ 39 01 40 39 111 30 38 20

South _________ 37 13 38 21 111 30 36 40
Virginia

North _________ 38 02 39 12 78 30 37 40

South _________ 36 46 37 58 78 30 36 20
Washington

North ____._____ 47 30 48 44 120 50 47 00

South _________ 45 50 47 20 120 30 45 20
West Virginia

North _________ 39 00 40 15 79 30 38 30

South _________ 37 29 38 53 81 00 37 00
Wisconsin

North _________ 45 34 46 46 90 00 45 10

Central ________ 44 15 45 30 90 00 43 50

South _________ 42 44 44 04 90 00 42 00

Hotine Oblique Mercator projection
Center of projection Azimuth of Scale”
Zone Long. Lat. central line reduction

Alaska®

1 133°40 W & 57°00' N. arctan (- %) 1:10,000
Great Lakes (U.S. Lake Survey, not State plane coordinates)
1 (Erie, Ont.,

St. Lawrence R.)78 00 44 00 55°40’ 1:10,000
2 (Huron) 82 30% 43 00 350 37 1:10,000
3 (Michigan) 87 00 44 00 15 00 1:10,000
4 (Superior, Lake {88 50 47 12 285 41 1:10,000

of the Woods) [00.256”‘* 21.554" 42.593"

Note.-All these systems are based on the Clarke 1866 ellipsoid and are based on the 1927 datum, Origin refers to rectangular
coordinates. For systems based on 1953 datum, see Appendix C.

! The major and minor axes of the ellipsoid are Laken at exactly 1.0000382 times those of the Clarke 1866, for Michigan only. This
incorporates an average elevation throughout the State of about 800 ft, with limited variation.

2 Along the central meridian.

% At origin, & = 500,000 R, y = 0 ft, except for Alaska zone 7, » = 700,000 fi; Alaska zone 9, » = 600,000 ft; and New Jersey, r =
2,000,000 ft.

* Additiona) zones listed in this table under other projeclion(s).

* At origin, » = 2,000,000 R, = O ft, except (a) r = 3,000,000 fi, (b) r = 4,186.692.58, y = 4,160,926.74 ft, (c) x = 800,000 ft,(d)xr=
600,000 ft, (e) x = 200,000 fL, (N y = 100,000 I, (g) = = 500,000 L, (h) & = 500,000 fL, y = 0. but radius to lat. of origin = - 82,000,000 fL.

% At center, (a) » = 5.000,000 meters, y = —5,000,000 m; (b) » = -3,950,000 m, y = —3,430,000 m; (¢) x = 1,200,000 m, y = -3.500,000
m: (d) » = —1,000.000 m. y = —4.300,000 m; (e) + = 9,000,000 m, y = — 1,600,000 m (Berry and Bormanis, 1970).

7 At central point.
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central meridian and scale factor are those of the SPCS zone. Thus, all quadran-
gles for a given zone may be mosaicked exactly. Beginning in 1977, many USGS
maps have been produced on the Universal Transverse Mercator projection (see
below). Prior to the late 1950’s, the Polyconic projection was used. The change in
projection was facilitated by the use of high-precision rectangular-coordinate plot-
ting machines. Some maps produced on the Transverse Mercator projection sys-
tem during this transition period are identified as being prepared according to the
Polyconic projection. Since most quadrangles cover only 7% minutes (at a scale of
1:24,000) or 15 minutes (at 1:62,500) of latitude and longitude, the difference
between the Polyconic and the Transverse Mercator for such a small area is much
more significant due to the change of central meridian than due to the change of
projection. The difference is still slight and is detailed later under the discussion
of the Polyconic projection. The Transverse Mercator is used in many other
countries for official topographic mapping as well. The Ordnance Survey of Great
Britain began switching from a Transverse Equidistant Cylindrical (the Cassini-
Soldner) to the Transverse Mercator about 1920.

The use of the Transverse Mercator for quadrangle maps has been recently
extended by the USGS to include the planet Mars. Although other projections are
used at smaller scales, quadrangles at scales of 1:1,000,000 and 1:250,000, and
covering areas from 200 to 800 km on a side, were drawn to the ellipsoidal
Transverse Mercator between lats. 65°N. and S. The scale factor along the cen-
tral meridian was made 1.0. For the current series, see table 6.

In addition to its own series of larger-scale quadrangle maps, the Army Map
Service used the Transverse Mercator for two other major mapping operations:
(1) a series of 1:250,000-scale quadrangle maps covering the entire country, and
(2) as the geometric basis for the Universal Transverse Mercator (UTM) grid.

The entire area of the United States has been mapped since the 1940’s in
sections 2° of longitude (between even-numbered meridians, but in 3° sections in
Alaska) by 1° of latitude (between each full degree) at a scale of 1:250,000, with the
UTM grid superimposed and with some variations in map boundaries at coastlines.
These maps were drawn with reference to their own central meridians, not the
central meridians of the UTM zones (see below), although the 0.9996 central scale
factor was employed. The central meridian of about one-third of the maps coin-
cides with the central meridian of the zone, but it does not for about two-thirds,
the “wing” sheets, which therefore do not perfectly match the center sheets. The
USGS has assumed publication and revision of this series and is casting new maps
using the correct central meridians.

Transverse Mercator quadrangle maps fit continuously in a north-south direction,
provided they are prepared at the same scale, with the same central meridian,
and for the same ellipsoid. They do not fit exactly from east to west, if they have
their own central meridians; although quadrangles and other maps properly con-
structed at the same scale, using the SPCS or UTM projection, fit in all directions
within the same zone.

UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator (UTM) projection and grid were adopted
by the U.8. Army in 1947 for designating rectangular coordinates on large-scale
military maps of the entire world. The UTM is the ellipsoidal Transverse Merca-
tor to which specific parameters, such as central meridians, have been applied.
The Earth, between lats. 84°N. and 80°S., is divided into 60 zones each generally 6°
wide in longitude. Bounding meridians are evenly divisible by 6°, and zones are
numbered from 1 to 60 proceeding east from the 180th meridian from Greenwich
with minor exceptions. There are letter designations from south to north (see fig.
11). Thus, Washington, D.C., is in grid zone 18S, a designation covering a quad-

57



MAP PROJECTIONS—A WORKING MANUAL

rangle from long. 72°to 78° W. and from lat. 32°to 40° N. Each of these quadrangles
is further subdivided into grid squares 100,000 meters on a side with double-letter
designations, including partial squares at the grid boundaries. From lat. 84° N.
and 80° S. to the respective poles, the Universal Polar Stereographic (UPS) projec-
tion is used instead.

As with the SPCS, each geographic location in the UTM projection is given &
and y coordinates, but in meters, not feet, according to the Transverse Mercator
projection, using the meridian halfway between the two bounding meridians as
the central meridian, and reducing its scale to 0.9996 of true scale (a 1:2,500
reduction). The reduction was chosen to minimize scale variation in a given zone;
the variation reaches 1 part in 1,000 from true scale at the Equator. The USGS,
for civilian mapping, uses only the zone number and the x and y coordinates,
which are sufficient to define a point, if the ellipsoid and the hemisphere (north or
south) are known; the 100,000-m square identification is not essential. The lines of
true scale are approximately parallel to and approximately 180 km east and west
of the central meridian. Between them, the scale is too small; beyond them, it is
too great. In the Northern Hemisphere, the Equator at the central meridian is
considered the origin, with an x coordinate of 500,000 m and a y of 0. For the
Southern Hemisphere, the same point is the origin, but, while x remains 500,000
m, y is 10,000,000 m. In each case, numbers increase toward the east and north.
Negative coordinates are thus avoided (Army, 1973, p. 7, endmap). A page of
coordinates for the UTM projection is shown in table 9.

The ellipsoidal Earth is used throughout the UTM projection system, but the
reference ellipsoid changes with the particular region of the Earth. For all land
under United States jurisdiction, the Clarke 1866 ellipsoid is used for the map
projection. For the UTM grid superimposed on the map of Hawaii, however, the
International ellipsoid is used. The Geological Survey uses the UTM graticule and
grid for its 1:250,000- and larger-scale maps of Alaska, and applies the UTM grid
lines or tick marks to its quadrangles and State base maps for the other States,
although they are generally drawn with different projections or parameters.

FORMULAS FOR [HE SPHERE

A partially geometric construction of the Transverse Mercator for the sphere
involves constructing a regular Mercator projection and using a transforming
map to convert meridians and parallels on one sphere to equivalent meridians and
parallels on a sphere rotated to place the equator of one along the chosen central
meridian of the other. Such a transforming map may be the equatorial aspect of
the Stereographic or other azimuthal projection, drawn twice to the same scale on
transparencies. The transparencies may then be superimposed at 90° angles and
the points compared.

In an age of computers, it is much more satisfactory to use mathematical
formulas. The rectangular coordinates for the Transverse Mercator applied to the
sphere (Thomas, 1952, p. 6):

x = VaRkoIn [(1 + B)(1 — B)] 8-1)
or
x = Rk, arctanh B (8-2)
y = Rk, larctan [tan d/cos (A — Ag)] = &g (8-3)y
k = kJ(1 — BH12 (8-4)
where
B = cos ¢ sin (A — Ap) (8-5)

(note: If B = * 1, x is infinite)

¢ if & = +90° and/or (A-A,) = +90°,
# = Rk, (z n/2-4,), 1aking sign of & in either case.
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TaBLE 9.—Universal Transverse Mercator grid coordinates

U.TM. GRID COORDINATES * CLARKE 1866 SPHEROID
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GRID COORDINATES FOR 7.8 MINUTE INTERSECTIONS
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and k, is the scale factor along the central meridian A,. The origin of the coordi-

nates is at (bg, A\g). The Y axis lies along the central meridian Ay, ¥ increasing

northerly, and the X axis is perpendicular, through ¢ at Ay, 2 increasing easterly.
The inverse formulas for (¢, A) in terms of (x, y):

¢ = aresin [sin D/cosh (x/Rkg)] 8-6)
N = Ao + arctan {sinh (x/Rko)/cos D] 8-7

where
= y/(Rky) + &y, using radians (8—8)

Rectangular coordinates for the sphere are shown in table 10. Only one octant
(quadrant of a hemisphere) needs to be listed, since all other octants are identical
except for sign change. See p. 268 for numerical examples.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, the most practical form of the equations is a set of
series approximations which converge rapidly to the correct centimeter or less at
full scale in a zone extending 3° to 4° of longitude from the central meridian. Beyond
this, the forward series as given here is accurate to about a centimeter at 7°
longitude, but the inverse series does not have sufficient terms for this accuracy.
The forward series may be used with meter accuracy to 10° of longitude. (Many
additional terms for use to 24° of longitude may be found in Army (1962).) Coordi-
nate axes are the same as they are for the spherical formulas above. The for-

TABLE 10.—Transverse Mercator projection: Rectangular coordinates for the sphere

[Radius of the Earth i» 1.0 unit. Longilude measured [rom central meridian. y di is in parenth under x
Origin of rectangulsr coardinates al Equator and central meridian. x increares east; v increases north. One oclant of glabe in

given: ather actants are aymmelrical)

Long. o o o ° °
m 0 10 20 30 40

90° _____ . ____ 0.0000 0.0000 0.0000 0.0000 0.0000
(1.57080)  (1.57080) (1.57080) (1.57080)  (1.57080)
80 - .00000 03016 05946 08704 .11209
(1.39626)  (1.39886)  (1.40659) (1.41926)  (1.43653)
0 .00000 .05946 11752 17271 22349
(1.22173)  (1.22662)  (1.24125)  (1.26545)  (1.29888)
60 .00000 .08704 17271 25541 33320
(1.04720)  (1.05380)  (1.07370)  (1.10715)  (1.15438)
B0 e .00000 11209 22349 .33320 43943
( .87266) ( .88019)  ( .90311) ( .94239)  ( .99951)
o .00000 .13382 26826 40360 53923
( 69813) ( .70568) ( .72891) ( .76961)  ( .83088)
30 .00000 15153 30535 46360 62800
( .52360) ( .53026) ( .55094) ( .58800) ( .64585)
20 . .00000 .16465 33320 50987 69946
(.34907)  ( .35401)  ( .36954) ( .39786) ( .44355)
10 .00000 17271 35051 53923 74644
(.17453)  ( .17717)  ( .18549)  ( .20086) ( .22624)
| S .00000 17543 35638 54931 76291

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)
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mulas below are only slightly modified from those presented in standard refer-
ences to provide mm accuracy at full scale (Army, 1973, p. 5—7; Thomas, 1952,
p. 2—3). (See p. 269 for numerical examples.)

x= koNIA + (1 =T+ C)A%6 + (5— 18T + T? + T2C - 58¢'*)A"/120] (8-9)
y= koM — My + Ntan ¢ [A%2 + (5 — T + 9C + 4CH

AY24 + (61 — 58T + T¢ + 600C — 330e'2)A%/720]| (8—10)
k= koll+(1+C)AY2+ (5—4T + 42C + 13C* —28e¢'%) A*/24

+ (61 — 148T + 16T?)A®%/720] (8-11)

where k, = scale on central meridian (e.g., 0.9996 for the UTM projection)

e? =e%(1 - €% (8-12)
N =all — € sin® ¢)? (4—20)
T =tan’$ (8-13)
C =e%cos’d (8-14)
A =(N — Ay cos ¢, with X and A, in radians (8—15)
M =al(l — %4 — 3e'/64 — 5¢/256 — . . . ) b — (3e¥/8 + 3¢%/32

+ 45¢%/1024 + . . ) sin 2¢ + (15¢/256 + 45e%/1024

4+ ...)sin4d — (35¢%3072 + .. .)sin6dp + ... (3-21)

with ¢ in radians. M is the true distance along the central meridian from the
Equator to ¢. See equation (3—22) for a simplification for the Clarke 1866 ellipsoid.

M, = M calculated for ¢, the latitude crossing the central meridian A, at the
origin of the x, y coordinates.

Note: If & = = w/2, all equations should be omitted except (3—21), from which
M and M, are calculated. Thenx = 0, y = k(M — M), k = k,.

TABLE 10.—Transverse Mercator projection: Rectangular coordinates for the sphere—Continued

Long. ° ° ° o °
La~Lone 50 60 70 80 90

90° ______________ 0.0000 0.0000 0.0000 0.0000 0.0000
(1.57080) (1.57080)  (1.57080) (1.57080) (1.57080)
8O0 .13382 15163 .16465 17271 17543
(1.45794)  (1.48286) (1.51056)  (1.54019) (1.57080)
70 - .26826 .30635 .33320 .35051 .35638
(1.34097)  (1.39078)  (1.44695) (1.50768)  (1.57080)
60 .40360 .46360 .50987 .53923 54931
(1.21544)  (1.28976)  (1.37584)  (1.47087)  (1.57080)
50 .53923 .62800 .69946 74644 16291
(1.07616)  (1.17355)  (1.29132) (1.42611)  (1.57080)
0 67281 79889 .90733 98310 1.01068
(.91711)  (1.03341)  (1.18375) (1.36673)  (1.57080)
30 .79889 .97296 1.13817 1.26658 1.31696
(.73182) ( .85707) (1.03599) (1.27864)  (1.57080)
20 .90733 1.13817 1.38932 1.62549 1.73542
( .61522)  ( .62923) ( .B1648) (1.12564)  (1.57080)
10 .98310 1.26658 1.62549 2.08970 2.43625
( .26773) (. .33904)  ( .47601) ( .79305)  (1.57080)
0 1.01068 1.31696 1.73542 2.43625

( .00000)  ( .00000) ( .00000) ( .00000) Inf.

61
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8. TRANSVERSE MERCATOR PROJECTION

TaBLE 11.—Universal Transverse Mercator projection: Location of points with given scale factor

(x coordinates in meters al various lalitudes. Based on inverrion of equation (8-16), using Clarke 1866 elliproid. Values are on or
to right of central meridian (x=500.000 m). For coordinates left of central meridian, sublract values of x from 1,000,000 m.
Latitude is north or south]

Scale factor

Lat. 0.9996 0.9998 1.0000 1.0002 1.0004 1.0006

BO° . 500,000 627,946 680,943 721,609 755,892 786,096
0 - 500,000 627,871 680,836 721,478 755,741 785,927
60 ___________ 500,000 627,755 680,673 721,278 755,510 785,668
50 500,000 627,613 680,472 721,032 755,226 785,352
40 500,000 627,463 680,260 720,772 754,925 785,015
30 500,000 627,322 680,060 720,628 754,643 784,700
20 . 500,000 627,207 679,808 720,329 754,414 784,443
10 . 500,000 627,132 679,792 720,199 754,264 784,276
0 500,000 627,106 679,755 720,154 754,212 784,218

Equation (8—11) for k may also be written as a function of x and ¢:

k = ko[l + (1 + e'? cos? $)a?/(2k%N?)] (8-16)

These formulas are somewhat more precise than those used to compute the State
Plane Coordinate tables, which were adapted to use desk calculators of 30—40
years ago. Table 11 shows the variation of k with x.
To obtain UTM or SPCS coordinates, the appropriate “false easting” is added
to x and “false northing” added to y after calculation using (8—9) and (8—10).
For the inverse formulas (Army, 1973, p. 6, 7, 46; Thomas, 1952, p. 2—3):

b = & — (N tan /R )[D¥2 — (5 + 3T, + 10C, — 4C 2 — 9e’2)D%24

+ (61 + 90T, + 298C, +45T,% — 252¢' — 3C,2)D"/720) (8-17
A=N +[D- (1 + 2T + C)D¥6 + (5 - 2C, + 28T,
- 3C,% + 8e'? + 24T,5D°/120)/cos &, (8-18)

where ¢, is the “footpoint latitude” or the latitude at the central meridian which
has the same y coordinate as that of the point (¢, \).
It may be found from equation (3—26):

by = p + (3e,/2 — 27e,%32 + . .. )sin 2u + (2le, %16

~ 55e,;"32 + .. )sindp + (151¢,%96 + . .. )sin6p + (1097,/512 — . . . )

sin 8w + ... (3—-26)
where

e; =[1-(1-eD%11 + (1-e®)") (8-24)

n = Mila(1—e*4 — 3¢/64 — 5¢%266~ . . . )] (7-19)

M =My + yk, (8-20)

with M, calculated from equation (3—21) or (3—22) for the given o,.

For improved computational efficiency using series (3—21) and (3—26), see
p- 19. From ¢,, other terms below are calculated for use in equations (8—17) and
(8-18). (If & = =m/2, (8-12), (8—21) through (8—25), (8—17) and (8—-18) are
omitted, but ¢ = =90°, taking the sign of y, while A is indeterminate, and may be
called A,. Also, k = kg.)
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e’ = (1-¢%) (8-12)
C, =e?cos® &, (8-21)
T, =tan?d, (8-22)
N, = al(1—¢€? sin® $,)% (8—23)
R, = a(1—-e*)/(1—e®sin® )32 (8-24)
D = x/(Niky) (8—25)

To convert from tabular rectangular coordinates to ¢ and A, it is necessary to
subtract any “false easting” from x and “false northing” from y before inserting x
and y into the inverse formulas. To convert coordinates measured on an existing
map, the correct central meridian must be used for the Y axis on the Transverse
Mercator, but the X axis may cross it perpendicularly at any latitude chosen by
the user.

“MODIFIED TRANSVERSE MERCATOR” PROJECTION

In 1972, the USGS devised a projection specifically for the revision of a 1954
map of Alaska which, like its predecessors, was based on the Polyconic projection.
The projection was drawn to a scale of 1:2,000,000 and published at 1:2,500,000
(map “E™) and 1:1,584,000 (map “B”). Graphically prepared by adapting coordi-
nates for the Universal Transverse Mercator projection, it is identified as the
“Modified Transverse Mercator” projection. It resembles the Transverse Merca-
tor in a very limited manner and cannot be considered a cylindrical projection. It
approximates an Equidistant Conic projection for the ellipsoid in actual con-
struction. Because of the projection name, it is listed here. The projection was
also used in 1974 for a base map of the Aleutian-Bering Sea Region published at
the 1:2,500,000 scale.

The basis for the name is clear from an unpublished 1972 description of the
projection, in which it is also stressed that the “latitudinal lines are parallel” and
the “longitudinal lines are straight.” The computations

were taken from the AMS Technical Manual #21 (Universal Transverse Mercator) based on the Clarke
1866 Spheroid.*** The projection was started from a N — S central construction line of the 153° longi-
tude which is also the centerline of Zone 5 from Lthe UTM tables. Along this line each even degree
latitude was plotted from book values. At the plotted point for the 64° latitude, a perpendicular to the
construction line (153°) was plotted. From the center construction line for each degree east and west
for 4° (the limits of book value of Zone #5) the curvature of latitude was plotted. From this 64° latitude,
each 2°latitude north to 70° and south to 54° was constructed parallel to the 64° latitude line. Each degree
of longitude was plotted on the 58° and 68° latitude line. Through corresponding degrees of longitude
along these Lwo lines of latitude a straight line (line of longitude) was constructed and projected to the
limits of the map. This gave a small projection B® in width and approximately 18° in length. This
projection was repeated east and west until a projection of some 72° in width was attained.

For transferring data to and from the Alaska maps, it was necessary to deter-
mine projection formulas for computer programming. Since it appeared to be
unnecessarily complicated to derive formulas based on the above construction, it
was decided to test empirical formulas with actual coordinates. After careful
measurements of coordinates for graticule intersections were made in 1979 on the
stable-base map, it was determined that the parallels very closely approximate
concentric circular ares, spaced in proportion to their true distances on the ellipsoid,
while the meridians are nearly equidistant straight lines radiating from the center
of the circular arcs. Two parallels have a scale equal to that along the meridians.
The Equidistant Conic projection for the ellipsoid with two standard parallels was
then applied to these coordinates as the closest approximation among projections
with available formulas. After various trial values for scale and standard parallels
were tested, the empirical formulas below (equations (8—26) through (8—32))
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were obtained. These agree with measured values within 0.005 inch at mapping
scale for 44 out of 58 measurements made on the map and within 0.01 inch for 54 of
them.

FORMULAS FOR THE “MODIFIED TRANSVERSE MERCATOR” FROJECTION

The “Modified Transverse Mercator” projection was found to be most closely
equivalent to an Equidistant Conic projection for the Clarke 1866 ellipsoid, with
the scale along the meridians reduced to 0.9992 of true scale and the standard
parallels at lat. 66.09° and 53.50° N. (also at 0.9992 scale factor). For the Alaska
Map “E” at 1:2,500,000, using long. 150° W. as the central meridian and lat. 58° N.
as the latitude of the origin on the central meridian, the general formulas (Snyder,
1978a, p. 378) reduce with the above parameters to the following, giving x and y
in meters at the map scale. The Y axis lies along the central meridian, y increas-
ing northerly, and the X axis is perpendicular at the origin, i increasing easterly.

For the forward formulas:

x =psind (8—26)
y = 1.5616640 — p cos 0 (8—-27)

where
8° = 0.8625111(\° + 150°) (8—28)
p = 4.1320402 — 0.04441727¢° + 0.0064816 sin 2¢ (8—29)

For the inverse formulas:

A° = (1/0.8625111) arctan [x/(1.5616640 — y)] — 150° (8—-30)
$° = (4.1320402 + 0.0064816 sin 2¢ — p)/0.04441727 (8—-31)

where
p = [a% + (1.5616640 — y)?]!/2 (8-32)

For Alaska Map “B” at a scale of 1:1,584,000, the same formulas may be used,
except that x and y are (2,500/1,584) times the values obtained from (8—26) and
(8—27). For the inverse formulas, the given x and y must be divided by
(2,500/1,584) before insertion into (8—30) and (8—32).

The equation for ¢, (8—31), involves iteration by successive substitution. If an
initial ¢ of 60° is inserted into the right side, & on the left may be calculated and
substituted into the right in place of the previous trial . Recalculations continue
until the change in ¢ is less than a preset convergence. If \ as calculated is less
than —180°, it should be added to 360° and labeled East Longitude.

Formulas to adjust « and y for the map inset of the Aleutian Islands are omitted
here, but the coordinates above are rotated counterclockwise 29.79° and trans-
posed +0.798982 m for x and +0.347600 m for y.
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9. OBLIQUE MERCATOR PROJECTION

SUMMARY

¢ Cylindrical (oblique).

o Conformal.

o Two meridians 180° apart are straight lines.

e Other meridians and parallels are complex curves.

e Scale on the spherical form is true along chosen central line, a great circle at an
oblique angle, or along two straight lines parallel to central line. The scale on
the ellipsoidal form is similar, but varies slightly from this pattern.

o Scale becomes infinite 90° from the central line.

o Used for grids on maps of the Alaska panhandle, for mapping in Switzerland,
Madagascar, and Borneo and for atlas maps of areas with greater extent in
an oblique direction.

« Developed 1900—50 by Rosenmund, Laborde, Hotine, and others.

HISTORY

There are several geographical regions such as the Alaska panhandle centered
along lines which are neither meridians nor parallels, but which may be taken as
great circle routes passing through the region. If conformality is desired in such
cases, the Oblique Mercator is a projection which should be considered.

The historical origin of the Oblique Mercator projection does not appear to be
sharply defined, although it is a logical generalization of the regular and Trans-
verse Mercator projections. Rosenmund (1903) made one of the earliest pub-
lished references. when he devised an ellipsoidal form which is used for topo-
graphic mapping of Switzerland. The projection was not mentioned in the detailed
article on “Map Projections” in the 1911 Encyclopaedia Britannica (Close and
Clarke, 1911) or in Hinks’ brief text (1912). Laborde applied the Oblique Mercator
to the ellipsoid for the topographic mapping of Madagascar in 1928 (Young, 1930;
Laborde, 1928). H. J. Andrews (1935, 1938) proposed the spherical forms for
maps of the United States and Eurasia. Hinks presented seven world maps on the
Oblique Mercator, with poles located in several different positions, and a conse-
quent variety in the regions shown more satisfactorily (Hinks, 1940, 1941).

A study of conformal projections of the ellipsoid by British geodesist Martin
Hotine (1898—1968), published in 1946—-47, is the basis of the U.S. use of the
ellipsoidal Oblique Mercator, which Hotine called the “rectified skew orthomorphic”
(Hotine, 1947, p. 66—67). The Hotine approach has limitations, as discussed
below, but it provides closed formulas which have been adapted for U.S. mapping
of suitable zones. One of its limitations is overcome by a recent series form of the
ellipsoidal Oblique Mercator (Snyder, 1979a, p. 74), but other limitations result
instead. This later form resulted from development of formulas for the continuous
mapping of satellite images, using the Space Oblique Mercator projection (to be
discussed later).

While Hotine projected the ellipsoid conformally onto an “aposphere” of con-
stant total curvature and thence to a plane, J. H. Cole (1943, p. 16—30) projected
the ellipsoid onto a “conformal sphere,” using conformal latitudes (described earlier)
to make the sphere conformal with respect to the ellipsoid, then plotted the
spherical Oblique Mercator from this intermediate sphere. Rosenmund’s system
for Switzerland is a more complex double projection through a conformal sphere
(Rosenmund, 1903; Bolliger, 1967). Laborde combined the conformal sphere with

a complex-algebra transformation of the Oblique Mercator (Reignier, 1957,
p. 130).
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FIGURE 12.—Oblique Mercator projection with the center of projection at lat. 45° N. on the central
meridian. A straight line through the point and, in this example, perpendicular to the central
meridian is true to scale. The projection is conformal and has been used for regions lying along a
line oblique 'to meridians.

FEATURES

The Oblique Mercator for the sphere is equivalent to a regular Mercator projec-
tion which has been altered by wrapping a cylinder around the sphere so that it
touches the surface along the great circle path chosen for the central line, instead
of along the Earth’s Equator. A set of transformed meridians and parallels rela-
tive to the great circle may be plotted bearing the same relationship to the
rectangular coordinates for the Oblique Mercator projection, as the geographic
meridians and parallels bear to the regular Mercator. It is, therefore, possible to
convert the geographic meridians and parallels to the transformed values and
then to use the regular Mercator equations, substituting the transformed values
in place of the geographic values. This is the procedure for the sphere, although
combined formulas are given below, but it becomes much more complicated for
the ellipsoid. The advent of present-day computers and programmable pocket
calculators make these calculations feasible for sphere or ellipsoid.

The resulting Oblique Mercator map of the world (fig. 12) thus resembles the
regular Mercator with the landmasses rotated so that the poles and Equator are
no longer in their usual positions. Instead, two points 90° away from the chosen
great circle path through the center of the map are at infinite distance off the
map. Normally, the Oblique Mercator is used only to show the region near the
central line and for a relatively short portion of the central line. Under these
conditions, it looks similar to maps of the same area using other projections,
except that careful scale measurements will show differences.
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TABLE 12.—Hotine Oblique Mercator projection parameters used for Landsat 1, 2, and 3 imagery

HOM Limiting Central Central Azimuth
zone latitudes latitude longitude' of axis
1 48°N-81°N 67.0983°N 81.9700°W 24.7708181°
2 = 23°N-48°N 36.0000°N 99.2750°W 14.3394883°
R 23°8-23°N 0.0003°N 108.5069°W 13.001443°
4_ 23°85-48°S 36.0000°S 117.7388°W 14.33948832°
| . 48°8-81°S 67.0983°S 135.0438°W 24.7708181°
- . 48°S8-81°S 67.0983°S 85.1220°E -24.7708181°
T e 23°S-48°S 36.0000°3 67.8170°E -14.33948832°
8 23°5-23°N 0.0003°N 58.5851°E -13.001443°
9 23°N-48°N 36.0000°N 49.3532°E -14.33948832°
10 _____ 48°N-81°N 67.0983°N 32.0482°E -24.7708181°

! For path 31. For other path numbers p, the central longitude is decreased (west is negative) by (360°/251) x (p -
3an.
Note: These parameters are used with equations given under Alternate B of ellipsoidal Oblique Mercator formulas,
with g the central latitude, Ao the central longitude, and a, the azimuth of axis east of north. Scale factor &, at center
is 1.0

It should be remembered that the regular Mercator is in fact a limiting form of
the Oblique Mercator with the Equator as the central line, while the Transverse
Mercator is another limiting form of the Oblique with a meridian as the central
line. As with these limiting forms, the scale along the central line of the Oblique
Mercator may be reduced to balance the scale throughout the map.

USAGE

The Oblique Mercator projection is used in the spherical form for a few atlas
maps.For example, the National Geographic Society uses it for atlas and sheet
maps of Hawaii, the West Indies, and New Zealand. The spherical form is being
used by the USGS for maps of North and South America and Australasia in a new
set of 1:10,000,000-scale maps of Hydrocarbon Provinces.* For North America,
the central scale factor is 0.968, and the transformed pole is at lat. 10°N., long.
10°E. For South America, these numbers are 0.974, 10°N., and 30°E., respec-
tively; for Australasia, 0.978, 55°N., and 160°W. These parameters were chosen
after a least-squares analysis of over 100 points on each continent to determine
optimum parmaters for a common conformal projection.

In the ellipsoidal form it was used, as mentioned above, by Rosenmund for
Switzerland and Laborde for Madagascar. Hotine used it for Malaya and Borneo
and Cole for Italy. It is used in the Hotine form by the USGS for grid marks on
zone 1 (the panhandle) of Alaska, using the State Plane Coordinate System as
adapted to this projection by Erwin Schmid of the former Coast and Geodetic
Survey. The Hotine form was also adopted by the U.S. Lake Survey for mapping
of the five Great Lakes, the St. Lawrence River, and the U.S.-Canada Border
Lakes west to the Lake of the Woods (Berry and Bormanis, 1970). Four zones
are involved; see table 8 for parameters of these and the Alaska zones.

More recently, the Hotine form was adapted by John B. Rowland (USGS) for
mapping Landsat 1, 2, and 3 satellite imagery in two sets of five discontinuous
zones from north to south (table 12). The central line of the latter is only a close
approximation to the satellite groundtrack, which does not follow a great circle
route on the Earth; instead, it follows a path of constantly changing curvature.
Until the mathematical implementation of the Space Oblique Mercator (SOM)
projection, the Hotine Oblique Mercator (HOM) was probably the most suitable
projection available for mapping Landsat type data. In addition to Landsat,
the HOM projection has been used to cast Heat Capacity Mapping Mission (HCMM)

* These maps are no longer an active project.
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imagery since 1978. NOAA (National Oceanic and Atmospheric Administration)
has also cast some weather satellite imagery on the HOM to make it compatible
with Landsat in the polar regions which are beyond Landsat coverage (above lat.
82°).

The parameters for a given map according to the Oblique Mercator projection
may be selected in various ways. If the projection is to be used for the map of a
smaller region, two points located near the limits of the region may be selected to
lie upon the central line, and various constants may be calculated from the lati-
tude and longitude of each of the two points. A second approach is to choose a
central point for the map and an azimuth for the central line, which is made to
pass through the central point. A third approach, more applicable to the map of a
large portion of the Earth’s surface, treated as spherical, is to choose a location on
the original sphere of the pole for a transformed sphere with the central line as
the equator. Formulas are given for each of these approaches, for sphere and
ellipsoid.

FORMULAS FOR THE SPHERE

Starting with the forward equations. for rectangular coordinates in terms of
latitude and longitude (see p. 272 for numerical examples):

1. Given two points to lie upon the central line, with latitudes and longitudes
(d1,M1) and (bs,A;) and longitude increasing easterly and relative to Green-
wich. The pole of the oblique transformation at (¢,,A,) may be calculated
as follows:

A, =arctan [(cos &, sin by cos Ay — sin ¢y cos by cos Ay)/
(sin &, cos &, sin Ay — cos &, sin ¢, sin \})] 9-1
¢, =arctan [- cos (A, — Ap)/tan &) 9-2)

The Fortran ATANZ2 function or its equivalent should be used with equation
(9—1), but not with (9—2). The other pole is located at (=&, A, =m). Using
the positive (northern) value of ¢,, the following formulas give the rectangular
coordinates for point (¢,A), with k, the scale factor along the central line:

¥ = Rkgarctan |[tan ¢ cos &, + sin ¢, sin (A — Ag)l/eos (A—=Ng)] 9-3)
y = (R2)kyn[(1+A4)(1-A)] (9-4)
or
Yy = Rk, arctanh A (9—4a)
k =ky(1-A%2 (9-5)
where
A = sin ¢, sin ¢ — cos ¢, cos d sin (A — Ay) (9-6)

With these formulas, the origin of rectangular coordinates lies at

by =0
Ao =N, + /2 (9—6a)

and the X axis lies along the central line, x increasing easterly. The trans-
formed poles are y equals infinity.
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2. Given a central point (&., A) with longitude increasing easterly and relative to
Greenwich, and azimuth B east of north of the central line through (., 1),
the pole of the oblique transformation at (¢, \,) may be calculated as follows:

¢, = arcsin (cos &, sin @) ©9-7
A, =arctan [— cos B/(— sin ¢, sin B)] + A, (9-8)

These values of ¢, and A, may then be used in equations (9—3) through
(9—6) as before.

3. For an extensive map, ¢, and A, may be arbitrarily chosen by eye to give the
pole for a central line passing through a desired portion of the globe. These
values may then be directly used in equations (9—3) through (9~6) without
intermediate calculation.

For the inverse formulas, equations (9—1) and (9-2) or (9—7) and (9—-8) must
first be used to establish the pole of the oblique transformation, if it is not known
already. Then,

& =aresin [sin ¢, tanh (y/Rk,) + cos &, sin (x/Rky)/cosh (yy/Rkq)] (9—9)
N =\, + arctani[sin ¢, sin (2/Rk,) — cos ¢, sinh (y/Rk,}}/cos (x/Rky)] (9-10)

FORMULAS FOR THE FLLIPSOID

These are the formulas provided by Hotine, slightly altered to use a positive
eastern longitude (he used positive western longitude), to simplify calculations of
hyperbolic functions, and to use symbols consistent with those of this bulletin.
The central line is a geodesic, or the shortest route on an ellipsoid, corresponding
to a great circle route on the sphere.

It is customary to provide rectangular coordinates for the Hotine in terms
either of (u, v) or (x, ¥). The (u, ») coordinates are similar in concept to the (x, )
calculated for the foregoing spherical formulas, with w corresponding to «x for the
spherical formulas, increasing easterly from the origin along the central line, but
v corresponds to —y for the spherical formulas, so that v increases southerly in a
direction perpendicular to the central line. For the Hotine, x and y are calculated
from (u, v) as “rectified” coordinates with the Y axis following the meridian
passing through the center point, and increasing northerly as usual, while the X
axis lies east and west through the same point. The X and Y axes thus lie in
directions like those of the Transverse Mercator, but the scale-factor relation-
ships remain those of the Oblique Mercator.

The normal origin for («, v) coordinates in the Hotine Oblique Mercator is
approximately at the intersection of the central line with the Earth’s Equator.
Actually it occurs at the crossing of the central line with the equator of the
“aposphere,” and is, thus, a rather academic location. The “aposphere” is a sur-
face wilh a constant “total” curvature based on the curvature along the meridian
and perpendicular thereto on the ellipsoid at the chosen central point for the
projection. The ellipsoid is conformally projected onto this aposphere, then to a
plane. As a result, the Hotine is perfectly conformal, but the scale along the
central line is true only at the chosen central point along that line or along a
relatively flat elliptically shaped line approximately centered on that point, if the
scale of the central point is arbitrarily reduced to balance scale over the map. The
variation in scale along the central line is extremely small for a map extending
less than 45° in are, which includes most existing usage of the Hotine. A longer
central line suggests the use of a different set of formulas, available as a limiting
form of the Space Oblique Mercator projection. On Rosenmund’s (1903), Laborde’s



9. OBLIQUE MERCATOR PROJECTION

(1928), and Cole’s (1943) versions of the ellipsoidal Oblique Mercator, the central
line is a great circle arc on the intermediate conformal sphere, not a geodesic. As
on Hotine’s version, this central line is not quite true to scale except at one or two
chosen points. *

The projection constants may be established for the Hotine in one of two ways,
as they were for the spherical form. Two desired points, widely separated on the
map, may be made to fall on the central line of the projection, or the central line
may be given a desired azimuth through a selected central point. Taking these
approaches in order:

Alternate A, with the central line passing through two given points.

Given:

a and e for the reference ellipsoid.

ko = scale factor at the selected center of the map, lying on the central line.

o = latitude of selected center of the map.

(¢4, A1) = latitude and longitude (east of Greenwich is positive) of the first point
which is to lie on the central line.

(d,, Ap) = latitude and longitude of the second point which is to lie on the

central line.

(¢, \) = latitude and longitude of the point for which the coordinates are

desired.

There are limitations to the use of variables in these formulas: To avoid indeter-
minates and division by zero, ¢, or ¢, cannot be = 7/2, ¢, cannot be zero or equal
to ¢, (although &, may be zero), and ¢, cannot be —w/2. Neither &, ¢, nor ¢,
should be = w/2 in any case, since this would cause the central line to pass through
the pole, for which the Transverse Mercator or polar Stereographic would proba-
bly be a more suitable choice. A change of 10-7 radian in variables from these
special values will permit calculation of an otherwise unsatisfactory condition.

It is also necessary to place both (db;, A;) and (3, Ap) on the ascending portion, or
both on the descending portion, of the central line, relative to the Earth's Equator.
That is, the central line should not pass through a maximum or minimum between
these two points.

If e is zero, the Hotine formulas give coordinates for the spherical Oblique
Mercator.

Because of the involved nature of the Hotine formulas, they are given here in
an order suitable for calculation, and in a form eliminating the use of hyperbolic
functions as given by Hotine in favor of single calculations of exponential functions
to save computer time. The corresponding Hotine equations are given later for
comparison (see p. 274 for numerical examples).

B =[1+¢® cos? y/(1—€A)2 (9-11)
A = aBlko(1-e*12/(1—e? sin? ¢y) (9-12)
to = tan (m/d—dy/2)/[(1—e sin $o)/(1+ e sin dg)l2 (9-13)

1 — sin ¢ 1 + esin ¢y \¢ ]2
or = 1 + sin ¢, 1 — e sin ¢g (9-13a)
t, = same as (9—13), using ¢, in place of ¢y.

t, = same as (9—13), using ¢, in place of ¢,.
D = B(1—e*)'/[cos do(1 — e sin® dg)i2] (9-14)

If &y = 0, D may calculate to slightly less than 1.0 and create a problem in the next
step. If D?<1, it should be made 1.

E =[D * (D* - 1)), taking the sign of ¢, (9—-15)
H =5 (9-16)

* Actually Laborde's version begins with the Transverse Mercator, but it effectively becomes an Oblique
Mercator.
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L =t 9-17)
F =E/H (9—-18)
G =(F - 1/F2 (9-19)
J =(E? - LHDIE? + LH) (9-20)
P =L -H/L + H 9-21)
Mo = (A + AsV2 — arctan |J tan [B(\, — \,)/2)/P)/B (9-22)
Yo = arctan [sin [B(A,; — \)VG} (9-23)
a, = arcsin [D sin vy,] (9—24)

To prevent problems when straddling the 180th meridian with A, and X3, before
calculating (9—22), if (\; — Ao) < — 180°, subtract 360° from A,. If(A; — \)>180°, add
360°to A,. Also adjust Agand (A; — A¢) to fall between +180° by adding or subtracting
360°. The Fortran ATANZ2 function is not to be used for equations (9—22) and (9-23).
The above equations (9—11) through (9—-24) provide constants for a given
map and do not involve a specific point (¢,A). Angle a, is the azimuth of the cen-
tral line as it crosses latitude ¢,, measured east of north. For point (¢, A\), calcu-
late the following:

t = same as equation (9—13), but using ¢ in place of d,.

Il & = =7/2, do not calculate t, but go instead to (9—30).

Q =Eits (9-25)
S =@ - Q2 (9-26)
T =(@ + 1/Qy2 9-27)
V =sin [B(A — Ap)] (9-28)
U =(-Vcosyy + Ssin y)/T (9-29)
v =AIn[A-H/(1+ V2B (9—-30)

Note: If I = =1, v is infinite; if & = =7/2, v=(A/B) In tan (v/4Fv,/2)
¥ = A arctan [(S cos v, + V sin yg)cos [BON—=A]/B (9-31
Note: If cos [BIN=A)D]=0, u=AB\—-Xq). If b = =1/2, u = Ad/B.

Care should be taken that (A—X,) has 360° added or subtracted, if the 180th
meridian falls between, since multiplication by B eliminates automatic correction
with the sin or cos function.

The scale factor:

k = A cos (Bu/A)1-e%sin’$)"2la cos ¢ cos [B(A—1Ay))| (9-32)

If “rectified” coordinates (x, y) are desired, with the origin at a distance
(ro. yy) from the origin of the (u.v) coordinates, relative to the (X,Y) axes (see
fig. 13):

r =wrcosa, + usina, + 1 (9-33)
Yy =ucosa, — vsina, + ¥y, (9—-34)

The formulas given by Hotine and essentially repeated in Thomas (1952, p. 7-9),
modified for positive east longitude, « and v increasing in the directions shown in

figure 13, and symbols consistent with the above, relate to the foregoing formulas
as follows:?

"Hotine uses posilive west longitude, r corresponding to u here, and y corresponding to — v here. Thomas uses
positive west longitude. y corresponding to u here, and x corresponding to — v here. In caleulations of Alaska zone 1,
weut longitude is positive, but 1 and i agree with it and v, respectively. here. Using a, in equations (9-33), (9-34),
(9-40), and (9—41) leads Lo a y axis parallel Lo the meridian at (., A,), not the meridian through (1« =0, »=0). For the
latter case, use v, instead of a, in these four equations.
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Meridian of u,v origin

Y axis

|
|
t Earth Equator on aposphere
———————— |— — Earth Equator on ellipsoid
»
|
1 .
— X axis
origin
of [x, ) \v .
x=0 axis
y=0

FicUre 13.—Coordinate system for the Hotine Oblique Mercator projection.

Equivalent to (9—-11):

e? = e%(1—¢?)
B =(1+e'? cos ‘)2

Equivalent to (9—12):
R’y = a(l—e>/(1—e? sin 2d,)*2
Ny = a/(1—e® sin 2dy)2
A = Bko(R (N2

Other formulas:

rg = Ny cos &g
W, =In {tan (n/4+ ,/2)[(1—e¢ sin &, )/(1 + e sin $,)]?

Note: W, is equivalent to (—1In 1,) using equation (9—13).
(" = = arccosh (A/ry) — By,

Note: C is equivalent to In E, where E is found from equation (9—15); D, from
(9-14), is (A/ry).

1 -
tan [VeB(A; + o) —Bagl = tan [ /ZB()\;_an)\}f)[]l/tzaér;Elll_/z‘ngl ) +g]

The tanh in the numerator is J from equation (9—20), while the tanh in the de-
nominator is P from (9—21). The entire equation is equivalent to (9—22).
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tan yo = sin [B(A\; — A\o)¥sinh (BYs, + C)
This equation is equivalent to (9—23), the sinh being equivalent to G from (9—-19).
tanh (Buv/Akg) = |cos vy sin [B(N — Ag)] — sin y, sinh (B + C)l/cosh (BY + C)

This equation is equivalent to (9—30), with S the sinh function and T the cosh
function.

tan (Bu/Ako) = |cos y, sinh (B, + C) + sin yo sin [B(\ — A\g)l/cos [BX — \g)]

This equation is equivalent to (9-31).

Alternate B. The following equations provide constants for the Hotine Oblique
Mercator projection to fit a given central point and azimuth of the central line
through the central point. Given: a, e, ky, &0, and (¢, M) as for alternate A, but in-
stead of (¢,, Ay) and (dy, N3), A\ and a, are given,

where

(dy. A.) = latitude and longitude (east of Greenwich is positive), respectively, of
the selected center of the map, falling on the central line.
a, = angle of azimuth east of north, for the central line as it passes through
the center of the map (&, A,).

Limitations: ¢, cannot be zero or + w/2, and the central line cannot be at a
maximum or minimum latitude at ¢,. Ife = 0, these formulas also give coordinates
for the spherical Oblique Mercator. As with alternate A, these formulas are given
in the order of calculation and are modified to minimize exponential computations.
Several of these equations are the same as some of the equations for alternate A:

B =[1 + €% cos? dy/(1 — eA2 9-11)
A =aBk, (1 — e¥12(1 - e¥sin? ) (9-12)
ty = tan(n/d — bo/2)/[(1 — esindy)/(1 + esindg)le2 (9—-13)
D =B(1 - e®)12/[cos b, (1 — € sin? $y)12] (9-14)

If & = 0, D may calculate to slightly less than 1.0 and create a problem in the next
step. If D?<1, it should be made 1.

F =D = (D* — )2, taking the sign of &, (9—35)
E =Ft;r (9—-36)
G =(F - UF)2 9-19)
Yo = arcsin (sin /D) (9-37
Ay =\, — [arcsin (G tan v,)VB (9-38)

The values of u and v for center point (&, A,) may be calculated directly at this
point:

Ugory = * (A/B)aretan [(D* — 1)2/cos a.], taking the sign of ¢y.  (9—-39)

Vign ap = 0

These are the constants for a given map. Equations (9—25) through (9-32) for
alternate A may now be used in order, following calculation of the above
constants.

The inverse equations for the Hotine Oblique Mercator projection on the ellipsoid
may be shown with few additional formulas. To determine ¢ and A from x and y,
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or from u and v, the same parameters of the map must be given, except for ¢ and A,
and the constants of the map are found from the above equations (9—11) through
(9—24) for alternate A or (9—11) through (9—38) for alternate B. Then, if x
and y are given in accordance with the definitions for the forward equations, they
must first be converted to (x, v):

v = (x — x¢) cos a, — (¥ — Yo) Sin «, (9—40)
u = (¥ — yo) cos o, + (¥ — o) sin a, (9-41)

If (u, v) are given, or calculated as just above, the following steps are performed
in order:

Q = e-thia (9-42)
where e = 2.71828 . . . , the base of natural logarithms
S =(Q - 1/Q"2 (9—43)
T =@ + 1/Q)2 9-44)
V' =sin (Bu/A) (9-45)
U’ =(V'cos vy + S’ sin yo)/T’ (9—-46)
t =|ENQ + UY(1-U)pehs (9—47)

But if ' = = 1, & = =90°, taking the sign of U’, A may be called A, and
equations (7-9) and (9—48) below are omitted.

& = w2 — 2 arctan [f[(1 — e sin $)/(1 + e sin )]2 (7—9)

Equation (7—-9) is solved by iteration, using ¢ = (n/2 — 2 arctan ¢) as the first
trial ¢ on the right side, and using the successive calculations of ¢ on the left side
as successive values of ¢ on the right side, until the change in ¢ is less than a chosen
convergence value.

N = Ao — arctan [(S' cos yo — V' sin yg)/cos (Bu/A))/B (9-48)

Since the arctan (found as the ATANZ function) is divided by B, it is necessary to
add or subtract 360° properly, before the division.

To avoid the iteration, the series (3—5) may be used with (7—13) in place of
(7-9):

b = x + (%2 + be*24 + €12 + 136360+ .. . ) sin 2y +
(Te'/48 + 29¢5/240 + 8116%/11520 + . . . )sindy + (7e%/120 + 81€*/1120 + . . .)
sin 6x + (4279¢%161280 + ... )sin 8y + ... (3~5)

where
X = w/2 — 2 arctan t (7-13)
For improved computational efficiency using this series, see p. 19.
The equivalent inverse equations as given by Hotine are as follows, following
the calculation of constants using the same formulas as those given in his forward

equations:

tan {B(A — Ay)] = [sin v, sin (Bu/A) + cos vy, sinh (Bv/A))/cos (Bu/A)
tanh (By + C) = [cos vp sin (Bu/A) — sin y, sinh (Bv/A))/cosh (Bv/A)
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10. CYLINDRICAL EQUAL-AREA PROJECTION

SUMMARY

Cylindrical.

Equal-area.

e Meridians on normal aspect are equally spaced straight lines.

« Parallels on normal aspect are unequally spaced straight lines, closest near the
poles, cutting meridians at right angles.

« On transverse aspect, central meridian, each meridian 90° from central meridian,
and Equator are straight lines. Other meridians and parallels are complex
curves.

« On oblique aspect, two meridians 180° apart are straight lines. Other meridians
and parallels are complex curves.

e On normal aspect, scale is true along Equator, or along two parallels equidis-

tant from the Equator.

On transverse aspect, scale is true along central meridian, or along two straight
lines equidistant from and parallel to central meridian. (These lines are only
approximately straight for the ellipsoid.)

o On oblique aspect, scale is true along chosen central line, an oblique great circle,
or along two straight lines parallel to central line. Scale on ellipsoidal form is
similar, but varies slightly from this pattern.

« An orthographic projection of sphere onto cylinder.

« Substantial shape and scale distortion near points 90° from central line.

e Normal and transverse aspects presented by Lambert in 1772.

HISTORY AND USAGE

The fourth of the seven projections proposed by Johann Heinrich Lambert
(1772, p. 71-72) and occasionally given his name, is the Cylindrical Equal-Area
(fig. 14). In the same work (p. 72—73), he described its transverse aspect (fig. 16),
which has hardly been used. Even the normal aspect has seldom been used except
as a textbook example of the most easily constructed equal-area projection, but
several modifications of the normal aspect have been published.

These modifications consist of compressing the projection from east to west and
expanding it in the same ratio from north to south, thereby moving the parallel of
no distortion from the Equator to other latitudes. The earliest such modification
is from Scotland: James Gall's Orthographic Cylindrical, not the same as his pre-
ferred Stereographic Cylindrical, both of which were originated in 1855, has
standard parallels of 45° N. and S. (Gall, 1885). Walther Behrmann (1910) of Ger-
many chose 30°, based on certain overall distortion criteria (fig. 15). Very similar
later projections were offered by Trystan Edwards of England in 1953 and Arno
Peters of Germany in 1967; they were presented as revolutionary and original
concepts, rather than as modifications of these prior projections with standard
parallels at about 37° and 45°-47°, respectively (Maling, 1966, 1974).

The oblique Cylindrical Equal-Area projection has been proposed with particu-
lar parameters for maps of Eurasia and Africa (Thornthwaite, 1927) and of air
routes of the British Commonwealth (Poole, 1934). Different parameters are used
for fig. 17. The ellipsoidal form of the oblique and transverse aspects has appar-
ently been developed only recently (Snyder, 1985b).

FEATURES

Like other regular cylindricals, the graticule of the normal Cylindrical Equal-
Area projection consists of straight equally spaced vertical meridians perpendicu-
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lar to straight unequally spaced horizontal parallels. To achieve equality of area,
the parallels are spaced from the Equator in proportion to the sine of the latitude.
This is the simplest equal-area projection.

The normal Cylindrical Equal-Area for the sphere is a true perspective projec-
tion onto a cylinder tangent at the Equator: The meridians are projected from the
center of the sphere, and the parallels are projected with lines parallel to the
equatorial plane, or orthographically from infinity. Modifications such as
Behrmann's, described above, are perspective projections onto a secant cylinder.
For oblique and transverse aspects, the projection may be perspectively cast on
a cylinder tangent or secant at an oblique angle, or centered on a meridian.

There is no distortion of area anywhere on the projections, and no distortion
of scale and shape at the standard parallels of the normal aspect, or at the standard
lines of the oblique or transverse aspects. There is extreme shape and scale dis-
tortion 90° from the central line, or at the poles on the normal aspect. These are
the points which have infinite area and linear scale on the various aspects of the
Mercator projection. This distortion, even on the modifications described above.
is so great that there has been little use of any of the forms for world maps by
professional cartographers, and many of them have strongly criticized the inten-
sive promotion in the noncartographic community which has accompanied the
presentation of one of the recent modifications.

The meridians and parallels of the transverse and oblique aspects which are
straight or curved on the Mercator projection are straight or curved, respectively,
on the Cylindrical Equal-Area, except that the curves are differently shaped.

In spite of the shape distortion in some portions of a world map, the projection
is well suited for equal-area mapping of regions which are predominantly north-
south in extent, or which have an oblique central line, or which lie near the Equa-
tor. This is true in the same sense that for mid-latitude regions which extend
predominantly east-west, the Albers Equal-Area Conic projection is recommended
for equal-area mapping. Actually, the normal Cylindrical Equal-Area is the limit-
ing form of the Albers when the Equator or two parallels symmetrical about the
Equator are made standard. If such regions to be mapped are smaller than the
United States, the ellipsoidal form should be considered.

FORMULAS FOR THE SPHERF,
The geometric construction of the Cylindrical Equal-Area projection has been

described above. The forward formulas for the normal aspect are as follows, given
R, &, A, &, and A, to find « and y (see p. 278 for numerical examples):

xr =R (A=)\g) cos b, (10-1)
¥ =R sin d/cos ¢ (10-2)
h = cos d/cos by (10-2a)
k =1h (10-2b)

where &, is the standard parallel (N. or $.), or the Equator in Lambert's original
form. The X axis lies along the Equator, r increasing easterly. The Y axis lies
along the central meridian A, y increasing northerly, and the origin is (¢ = 0°, o).
If (A — \g) lies outside the range *180°, 360° should be added or subtracted so that
it will fall inside the range.

For the transverse aspect, given h, instead of .,

& = (R/hg) cos b sin (M- \q) (10-3)
y =R h,larctan [tan & / cos (A — A\y)] — &, (8-3)*

*if ¢ = =90° and/or A=Ay = =90°,
¥ = Rk, (£ ni2-d,), taking sign of ¢ in either case.

7
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where hy is the scale factor (normally 1.0) along the central meridian A,. The
origin of the coordinates is at (g, Ao). The Y axis lies along the central meridian
Ay. ¥ increasing northerly, and the X axis is perpendicular, through &, at Ay,
increasing easterly.

For the oblique aspect, the alternatives used for the Oblique Mercator projec-
tion are used here, with modification only in the formulas for the y coordinates:

1. Given two points to lie upon the central line, with latitudes and longitudes
(1, Ay and (s, Ap), and longitude increasing easterly and relative to Green-
wich, the pole of the oblique transformation at (¢, Ap) may be calculated as
follows:

Ap = arctan [(cos &, sin b, cos Ay —sin ¢, cos b, cos Ap)/
(sin ¢, cos ¢y sin A,—cos &, sin ¢, sin A()] 9-1
¢, = arctan [— cos (Ap—\;)/tan ¢} (9-2)

The Fortran ATANZ function or its equivalent should be used with equation
(9—1), but not with (9—2). The other pole is located at (= d&p, A, = 180°).
Using the positive (northern) value of ¢, the following formulas provide the
rectangular coordinates for point (¢, A), with k, as the scale factor along the
central line:

X = Rh, arctan {[tan ¢ cos by + sin b, sin (A—Ag)]/
cos (A= Ap)! (10-4)
y = (R/hy) [sin &, sin b — cos &), cos & sin (A—Ry)] (10-5)

With these formulas for the oblique aspect, the origin of rectangular coor-
dinates lies at

by =0
No =N, + T2 (9-6a)

and the X axis lies along the central line, x increasingly easterly. The trans-
formed poles are straight lines at y = R and are as long as the central line.

2. Given a central point (b, A;) with longitude increasing easterly and stated
relative to Greenwich, and azimuth vy east of north of the central line through
(d:. A;), the pole of the oblique transformation at (dp, Ap) may be calculated
as follows:

&, = arcsin (cos &, sin y) 9-7
A, = arctan [—cos y/(—sin ¢, sin y)] + \; 9-8)

These values of &, and A, may be used in equations (10—4) and (10—5) as
before.

For the inverse formulas, first for the normal aspect, given R, &g, A, ¥, and y,
to find ¢ and A:

& =arcsin [(y/R) cos b, (10-6)
N =X/(R cos by) + g (10-17)

For the transverse aspect, given h, instead of d,,

& =arcsin i[1—(h‘0 X/R)?)' sin D) (10-8)
A =\, + arctan |(hy x/R)/[[1-(h, x/R)2]': cos D) (10-9)
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where
D =y /(Rhy) + &y, using radians (10—-10)

For the oblique aspect, equations (9—1) and (9—2) or (9—7) and (9—8) must first
be used to establish the pole of the oblique transformation, if it is not known

already. Then

= arcsin [(yho/R) sin &, + [1=(yho/R)*}'* cos ¢, sin

[2/(Rho)] (10-11)
A =)o + arctan |[[1-(yho/R)?]'* sin b, sin [c/(Rhy)]
— (yho/R) cos bpl[1-(yhe/RY]'? cos [x/(Rhe)]] (10—12)

Note that the above equations for the oblique aspect may be used for the trans-
verse aspect, letting &, = 0°, except that the axes are rotated 90°.

FORMULAS FOR THE ELLIPSOID

In the following formulas, the ellipsoid is transformed onto the authalic
sphere, but the scale along the desired central line is made constant by variably
compressing the scale along this central line to match that along the same
path on the ellipsoid. To retain correct area, the distances perpendicular to the
central line are increased by the same ratio. For the oblique aspect, the central
line is not a geodesic, but is instead an oblique great circle on the authalic sphere.

For the forward formulas using the normal aspect, given a, ¢, g, Aj, &, and A,
to find x and y (see p. 281 for numerical examples), the equations are given in the
order of computation:

ko = cos &y/(1—e® sin? $p )2 (10-13)
g = (1-¢? [sin ¢/(1—e? sin® ¢) — [1/(2¢))

In [(1-e sin ¢b)/(1+e sin &)]} (3-12)

ro=aky (A\—np) (10-14)

=a ¢/(2k,y) (10-15)

For the transverse aspect, the subsequent formulas for the oblique aspect may
be used, but the following are simpler for the transverse alone. Given a, ¢, h,,
Ao, bo, &, and A, to find xr and y, first g is calculated from ¢ using equation (3—12)
above. Then

B = aresin (g/gy) 3-11)

where B is the authalic latitude corresponding to ¢, and ¢p is found as ¢ from
equation (3-12) for a ¢ of 90°.

B, = arctan [tan B/cos (A—\y)] (10—-16)
gc =qp sin B, (10-17)
1 —e®sin®d)? [ q. sin ¢, 1 1-esind
= + - - —_ —_ 3-16
e = & 2 cos &, [1 - e 1—e‘sin2d>c+2e In (] + e sin ¢C>] #-16)

Equation (3—16) requires iteration by successive substitution, using arcsin (q./2)
as the first trial ¢, on the right side, calculating ¢, on the left side, substituting
this new &, on the right side, etc., until the change in ¢, is negligible. This does
not converge if B, = * 90°, but then ¢, = B..

81
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r =acos B cos &, sin (\—rg)/[ho cos B, (1—e? sin® b,)'?] (10~-18)
M, = a [(1-e*4—3e"/64—5¢5/256 — . . )be

— (3¢%8 + 3e'/32 + 45¢°/1024 + . . .) sin 20,

+ (15¢%/256 + 45¢%/1024 + .. .) sin 4¢,

— (35€5/3072 + .. .) sin 6d, + .. .] 3-21)
y =ho (M.~My (10—-19)

where h, is the scale factor along the central meridian A,, and B, and ¢, are
authalic and geodetic “footpoint” latitudes, respectively, with the same y value at
the central meridian as the point (¢, A). Constant M, is the value of M, calculated
from (3—21) with latitude of origin &, in place of ¢.. To avoid iteration, equations
(10—17) and (3—16) may be replaced with the following series:

be = B + (€*3 + 31e*180 + 517¢%/5040 + . . .) sin 2B,
+ (23¢%/360 + 251e%/3780 + . . .) sin 4P,
+ (761¢%/45360 + . . .)sin 68, + ... (3—18)

For the oblique aspect, the location of the pole (¢, Ap) may be given, or it may
be computed as described under the section on formulas for the sphere above.
Points &, &2, dp and &,, however, are replaced in equations (9—1), (9-2), (9-7)
and (9—8) with By, Bz, Bp and B,, respectively, and By, is finally converted to ¢p,
using equations (10—17) and (3—16), or just (3—18), and subscripts p instead of c.

If the ellipsoid is either the Clarke 1866 or the International, Fourier constants
may be taken from table 13. If it is a different ellipsoid, coefficients should be
calculated as described after these formulas. They may be converted to the specific
coefficients for the pole in use as follows:

B =b + aycos 20, + a;co8dd, + agcos 6dy, + ... (10—20)
Ay =by + @'y cos 2, + a’yy cos 4, + a'yg cos by + ... (10-21)
where
n = 2 and 4.

From ¢, B is determined using equations (3—12) and (3—11) above, and, if Bp was
not obtained earlier. it is calculated by substituting ¢, for ¢ in (3—12) and obtain-
ing B, from (3—11). Then,

A" = arctan i{cos B, sin B—sin B, cos B cos A=AV
[cos B sin (A=A (10—-22)

&

aho [BN' + Ay sin 2N + A, sin 4\’ + Agsin 6A'+ .. .] (10-23)

F =B + 24, cos 2\ + 44, cos 4N’ + 6A4 cos 6N + . . . (10—-24)

y = (¢gy/2)sin B, sin B + cos Bp cos B cos (A\—Np)I/(hoF) (10-25)
The axes are as stated for the corresponding aspect of the spherical form. For
more efficient computation of series (10—23) and (10—24) see p. 19.
For the inverse formulas for the ellipsoid, the normal aspect will be discussed
first. Given a, e, ¢y, Ao, x, and y, to find b and A (see p. 284 for numerical
examples), k, is determined from (10—13), and

B = aresin [2yky/(aq),)] (10—-26)
where g, is found from (3—12), using 90° for ¢, then ¢ is found from B using

(10-17) and (3-16), or just (3—18), without subscripts, these equations being
listed under the forward equations above.
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TABLE 13.—Fourier coefficients for oblique and transverse
Cylindrical Equal-Area projection for the ellipsoid

General coefficienls:

Coefficient Clarke 1866 Ellipsoid International Ellipsoid
b 0.9991507126 0.9991565046
az —-0.0008471537 —0.0008413907
ay 0.0000021283 0.0000020994
ag -0.0000000054 -0.0000000053
by —0.0001412090 —0.0001402483
a'x —0.0001411258 —0.0001401661
a’yy 0.0000000839 0.0000000827
a’'y 0.0000000006 0.0000000006
by —0.0000000435 —-0.0000000429
[ ~0.0000000579 —0.0000000571
a’y —0.0000000144 —0.0000000142
a’y 0.0000000000 0.0000000000
Coefficients for specific pole latitudes (Clarke 1866 ellipsoid):
b, B A, Ay

0° 0.9983056818 —0.0002822502 —0.0000001158
15 0.9984181201 —-0.0002633856 —0.0000001008
30 0.9987260769 ~0.0002118145 —0.0000000652
45 0.9991485842 -0.0001412929 —0.0000000290
60 0.9995732199 ~0.0000706875 ~=0.0000000073
5 0.9998854334 —0.0000189486 —0.0000000005
90 1.0 0.0 0.0
Coefficients for specific pole latitudes (International ellipsoid):
o, i Ay Ay

0° 0.9983172080 —0.0002803311 —=0.0000001142
15 0.9984288886 -0.0002615944 —=0.0000000995
30 0.9987347648 —0.0002103733 —0.0000000644
45 0.9991544051 —0.0001403310 —0.0000000287
60 0.9995761449 —0.0000702060 —0.0000000072
75 0.9998862200 ~0.0000188195 —0.0000000005
920 1.0 0.0 0.0

&, = latitude of pole of oblique aspect (0 for transverse, 90° for normal).

H’.,A,,, b, etc. = Fourier coefficients (sce text for use).

Note: B is used with A" in radians. Az = —0.0000000001 for b, = 0% o 20°, but is zero Lo ten places al higher

values of ¢,

Clarke 1866 ellipsoid: semimajor axis @ = 6378206.4 m; eccentricity squared ¢ = 0.006768638.
International ellipsoid: a = 6378388 m: ¢* = 0.006722670.

N = Ny + ¥a ky) (10-27)
For the transverse aspect, given a, e, hy, Aq, &, and y, to find ¢ and A:
M. =My + ytho (10-28)

where M, is found from ¢, using (3—21) and changing subscripts ¢ to o.

e = MJla(1—e%4—3e/64—55256— . . . )] (7-19)
e, = [1-(1-eH%)Y[1+ (1-eA)*) (3—24)
b = pe + (36,/2-27¢,732+ . . . )sin2p, + (21e,%16—55¢,/32+ . . .)

sin 4p. + (151e,%96— . . . ) sin 6, + (1097e,%/512— . . . )

sin 8p, + ... (3—26)
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Authalic latitude B, is determined for ¢. using equations (3—12) and (3—11), adding
subscripts ¢ to both B and ¢.

B’ = —aresin [k, x cos B, (1—e? sin? $)"/(a cos d.)] (10-29)
B = arcsin (cos B’ sin B) (10-30)
N = Ay — arctan (tan B'/cos B.) (10-31)

Latitude ¢ is found from B using (10~17) and (3—16), or just (3—18), all without
subscripts c.

For the oblique aspect, given a, ¢, h, bp. Apy T, and y, to find ¢ and A, Fourier
coefficients are determined as described above for the forward oblique ellipsoidal
formulas, while the pole location (¢p, Ap) may be determined if not provided, as
described for the forward oblique spherical formulas, and g, is found from (3-12)
using 90° for ¢. From x, A’ is determined from an iterative inverse of (10—23):

N = [xlahy)—A, sin 2N —A  sin AN —Agsin 6N — . . . VB (10-32)

Using a first trial A’ = x/(ah,B), A’ may be found by successive substitution of
trial values into the right side of this equation and solving for a new A\’ until the
change in N\’ is negligible.

Equation (10—24) above is used to find F from X\’. Then,

B’ = arcsin [2Fhqy/(aqp)} (10-33)
B = arcsin (sin B, sin B’ + cos B, cos B’ sin \') (10-34)
A =\, + arctan[cos B’ cos A'/(cos B, sin B’ —sin B, cos B’ sinA’)]  (10-35)

As before, ¢ is found from 8 using (10—17) and (3—16), or just (3—18), all without
subseripts c.

For the determination of Fourier coefficients, if they are not already provided,
equation (10—23) above is equivalent to the following equation which requires nu-
merical integration:

i@ ko) = fM F d\' (10—36)
where

F = isin® B, cos® &/[(1—e” sin? &) cos® B.]
+ (1=¢” sin” &) g,° cos® B, cos® N'/(4 cos? ¢)]* (10-37

In order to compute coefficients B and A,, in (10~23),

B = @mf,"2F d\ (10-38)
A, = [4/(mn)] f4™2 F cos n\' d\’ (10-39)

where n is 2, 4, and 6, successively. To compute coefficients which apply regard-
less of the value of ¢,, equations (10-38) and (10-39) may be rewritten as
equations (10—20) and (10—21), where

b = (2/m) fo™2 B d¢p (10-40)
a, = (/m) [y™2 B cos nd, do,, (10—41)
by = (2m) [o"2 A, db, (10-42)

@um = (@4 [7? A, cos m b, ddy (10-43)
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and n has the values 2 and 4, while m = 2, 4, and 6. To determine the coeffi-
cients from (10—40) through (10—43), double numerical integration is involved,
but this involves a relatively modest computer program: Choosing an interval of
9° (sufficient for 10-place accuracy) in both &, and \’, and starting with both &,
and X\’ at 0°, F is calculated from (10—37) as described below for each 9° of A’ from
0°to 90°, and the various values of F summed in accordance with Simpson’s rule as
applied to equations (10—38) and (10—39). Thus B, A,, A4, and A are computed
for ¢, = 0°. Similarly, the constants B and A, are computed for each 9° of ¢, to and
including 90°, and the various values are summed by applying Simpson’s rule to
(10—40) through (10—43), to obtain b, a,, ete.

To compute F from equation (10-37) for a given \', first B, is found from
&, using (3—12) and (3—11), subseripting ¢ and B with p. Then,

B. = arcsin (cos B, sin A') (10—44)
Now ¢, is found from B, using (10—17) and (3—16) or just (3—18). All variables

for (10—~37) are now known, except that it is indeterminate if ¢, = 0° at the same
time that A’ = 90°. In that case, F' = (g,/2)%.
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11. MILLER CYLINDRICAL PROJECTION

SUMMARY

Neither equal-area nor conformal.

Used only in spherical form.

e Cylindrical.

« Meridians and parallels are straight lines, intersecting at right angles.

e Meridians are equidistant; parallels spaced farther apart away from Equator.
« Poles shown as lines.

» Compromise between Mercator and other cylindrical projections.

Used for world maps.

Presented by Miller in 1942.

HISTORY AND FEATURES

The need for a world map which avoids some of the scale exaggeration of the
Mercator projection has led to some commonly used cylindrical modifications, as
well as to other modifications which are not cylindrical. The earliest common
cylindrical example was developed by James Gall of Edinburgh about 1855 (Gall,
1885, p. 119-123). His meridians are equally spaced, but the parallels are spaced
at increasing intervals away [(rom the Equator. The parallels of latitude are
actually projected onto a cylinder wrapped about the sphere, but cutting it at lats.
45° N. and 8., the point of perspective being a point on the Equator opposite the
meridian being projected. It is used in several British atlases, but seldom in the
United States. The Gall projection is neither conformal nor equal-area, but has a
blend of various features. Unlike the Mercator, the Gall shows the poles as lines
running across the top and bottom of the map.

What might be called the American version of the Gall projection is the Miller
Cylindrical projection (fig. 18), presented in 1942 by Osborn Maitland Miller
(1897-1979) of the American Geographical Society, New York (Miller, 1942).
Born in Perth, Scotland, and educated in Scotland and England, Miller came to
the Society in 1922. There he developed several improved surveying and mapping
technigques. An expert in aerial photography, he developed techniques for convert-
ing high-altitude photographs into maps. He led or joined several expeditions of
explorers and advised leaders of others. He retired in 1968, having been best
known to cartographers for several map projections, including the Bipolar Oblique
Conic Conformal, the Oblated Stereographic, and especially his Cylindrical
projection.

Miller had been asked by S. Whittemore Boggs, Geographer of the U.S. Depart-
ment of State, to study further alternatives to the Mercator, the Gall, and other
cylindrical world maps. In his presentation, Miller listed four proposals, but the
one he preferred, and the one used, is a fairly simple mathematical modification of
the Mercator projection. Like the Gall, it shows visible straight lines for the
poles, increasingly spaced parallels away from the Equator, equidistant meridians,
and is not equal-area, equidistant along meridians, nor conformal. While the
standard parallels, or lines true to scale and free of distortion, on the Gall are at
lats. 45° N. and S., on the Miller only the Equator is standard. Unlike the Gall, the
Miller is not a perspective projection.

The Miller Cylindrical projection is used for world maps and in several atlases,
including the National Atlas of the United States (USGS, 1970, p. 330-331).

As Miller (1942) stated,

the practical problem considered here is to find a system of spacing the parallels of latitude such that
an acceptable balance is reached between shape und area distortion. By an “acceptable™ halance is
meant one which to the uncritical eye does not obviously depart from the familiar shapes of the land
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areas as depicted by the Mercator projection but which reduces areal distortion as far as possible
under these conditions * * *, After some experimenting, the [Modified Mercator (b)] was judged to be
the most suitable for Mr, Boggs's purpose * * *.

FORMULAS FOR THE SPHERE

Miller’s spacings of parallels from the Equator are the same as if the Mercator
spacings were calculated for 0.8 times the respective latitudes, with the result
divided by 0.8. As a result, the spacing of parallels near the Equator is very close
to the Mercator arrangement.

The forward formulas, then, are as follows(see p. 287 for numerical examples):

x = R(A=Xg) (11-1
y = R[ln tan (n/4 + 0.44))/0.8 (11-2)

or
y = Rlaresinh (tan 0.8¢)]/0.8 (11-2a)

or
y = (R/1.6) In (1 + sin 0.84)/(1—sin 0.8¢)) (11-2b)

The scale factor, using equations (4—2) and (4—3),

h
A.

sec 0.8¢ 11-3)
sec & (11-4)

The maximum angular deformation w, from equation (4-9),
sin Y2w = (cos 0.8d—cos &)/(cos 0.8 + cos d) (11-5)

The X axis lies along the Equator, ¢ increasing easterly. The Y axis lies along the

central meridian X, y increasing northerly. If (A—\,) lies outside the range of

+180°,. 360° should be added or subtracted so that it will fall inside the range.
The inverse equations are easily derived from equations (11—-1) through (11 -2a):

¢ = 2.5 arctan e0-B¥/R)—5/8 (11-6)
or
& = arctan [sinh (0.8y/R)1/0.8 (11-6a)
where e is 2.71828 . . . |, the base of natural logarithms.
A=A+ 2R 11-7

Rectangular coordinates are given in table 14. There is no basis for an ellipsoidal
equivalent, since the projection is used for maps of the entire Earth and not for
local areas at large scale.
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TABLE 14.—Miller Cylindrical projection: Rectangular coordinates

[Radius of sphere=1.0]

3 Y h k w
90° o 2.30341 3.23607 Infinite 180.00°
8 2.04742 2.66947 11.47371 77.00
80 1.83239 2.28117 5.75877 51.26
(£ 1.64620 2.00000 3.86370 37.06
0 @ 1.48131 1.78829 2.92380 27.89
65 e 1.33270 1.62427 2.36620 21.43
60 1.19683 1.49448 2.00000 16.64
55 e 1.07113 1.39016 1.74345 12.95
50 .95364 1.30541 1.55572 10.04
45 84284 1.23607 1.41421 7.71
0 73754 1.17918 1.30541 5.82
35 63674 1.13257 1.22077 4.30
30 .53962 1.09464 1.15470 3.06
25 44547 1.06418 1.10338 2.07
20 e .35369 1.04030 1.06418 1.30
15 . .26373 1.02234 1.03528 72
10 o _____ .17510 1.00983 1.01543 .32

S .08734 1.00244 1.00382 .08

0 o ____ .00000 1.00000 1.00000 .00
I 0.017453 (\° = X°)

Note: r, ¥ = rectangular coordinates.

& = geodetic latitude.

(N"=Xo") = geodetic longitude, measured east from origin in degrees.

h = scale factor along meridian.
k = scale factor along parallel.
w = maximum angular deformation, degrees.

Origin of coordinates at intersection of Equator with A, X axis increases east, Y axis increases north. For southern

(negative) &, reverse sign of y.
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12. EQUIDISTANT CYLINDRICAL PROJECTION

SUMMARY

o Cylindrical.

« Neither equal-area nor conformal.

» Meridians and parallels are equidistant straight lines, intersecting at right
angles.

s Poles shown as lines.

e Used for world or regional maps.

e Very simple construction.

e Used only in spherical form.

« Presented by Eratosthenes (B.C.) or Marinus (A.D. 100).

HISTORY AND FEATURES

While the Equidistant Cylindrical projection has received limited use by the
USGS and generally has limited value, it is probably the simplest of all map
projections to construct and one of the oldest. The meridians and parallels are all
equidistant straight parallel lines, the two sets crossing at right angles.

The projection originated probably with Eratosthenes (27567-195? B.C.), the
scientist and geographer noted for his fairly accurate measure of the size of the
Earth. Claudius Ptolemy credited Marinus of Tyre with the invention about
A.D. 100 stating that, while Marinus had previously evaluated existing projections,
the latter had chosen “a manner of representing the distances which gives the
worst results of all.” Only the parallel of Rhodes (lat. 36°N.) was made true to
scale on the world map, which meant that the meridians were spaced at about
four-fifths of the spacing of the parallels for the same degree interval (Keuning,
1955, p. 13).

Ptolemy approved the use of the projection for maps of smaller areas, however,
with spacing of meridians to provide correct scale along the central parallel. All
the Greek manuscript maps for the Geographia, dating from the 13th century, use
the Ptolemy modification. It was used for some maps until the 18th century, but is
now used primarily for a few maps on which distortion is considered less impor-
tant than the ease of displaying special information. The projection is given a
variety of names such as Equidistant Cylindrical, Rectangular, La Carte
Parallélogrammatique, Die Rechteckige Plattkarte, and Equirectangular (Steers,
1970, p. 135-136). It was called the projection of Marinus by Nordenskiold
(1889).

If the Equator is made the standard parallel, true to scale and free of distortion,
the meridians are spaced at the same distances as the parallels, and the graticule
appears square. This form is often called the Plate Carrée or the Simple Cylin-
drical projection.

The USGS uses the Equidistant Cylindrical projection for index maps of the
conterminous United States, with insets of Alaska, Hawaii, and various islands
on the same projection. One is entitled “Topographic Mapping Status and Progress
of Operations (7'%- and 15-minute series),” at an approximate scale of 1:5,000,000.
Another shows the status of intermediate-scale quadrangle mapping. Neither the
scale nor the projection is marked, to avoid implying that the maps are suitable
for normal geographic information. Meridian spacing is about four-fifths of the
spacing of parallels, by coincidence the same as that chosen by Marinus. The
Alaska inset is shown at about half the scale and with a change in spacing ratios.
Individual States are shown by the USGS on other index maps using the same
projection and spacing ratio to indicate the status of aerial photography.
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The projection was chosen largely for ease in computerized plotting. While the
boundaries on the base map may be as difficult to plot on this projection as on
the others, the base map needs to be prepared only once. Overlays of digital
information, which may then be printed in straight lines, may be easily updated
without the use of cartographic and photographic skills. The 4:5 spacing ratio is
a convenience based on computer line and character spacing and is not an attempt
to achieve a particular standard parallel, which happens to fall near lat. 37° N.

FORMULAS FOR I'HE SPHERLE

The formulas for rectangular coordinates are almost as simple to use as the
geometric construction. Given R, Ay, &, \, and ¢ for the forward solution, x and ¥
are found thus:

X =R (A—\g) cos &, (12-1)
y =R (12-2)
h =1 12-3)
k =cos ¢,/cos ¢ (12—4)

The X axis coincides with the Equator, with x increasing easterly, while the Y
axis follows the central meridian A,, y increasing northerly. It is necessary to
adjust (A — A), if it is beyond the range + 180°, by adding or subtracting 360°. The
standard parallel is ¢, (also —¢,). For the inverse formulas, given R, Ay, ¢4, &,
and y, to find ¢ and A:

& =y/R (12-5)
N =Xy + /AR cos ¢)) (12—6)

Numerical examples are omitted in the appendix, due to simplicity. It must be
remembered, as usual, that angles above are given in radians.
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13. CASSINI PROJECTION

SUMMARY

e Cylindrical.

» Neither equal-area nor conformal.

e Central meridian, each meridian 90° from central meridian, and Equator are
straight lines.

o Other meridians and parallels are complex curves.

e Scale is true along central meridian, and along lines perpendicular to central
meridian. Scale is constant but not true along lines parallel to central meridian
on spherical form, nearly so for ellipsoid.

« Used for topographic mapping formerly in England and currently in a few other
countries.

« Devised by C. F. Cassini de Thury in 1745 for the survey of France.

HISTORY

Although the Cassini projection has been largely replaced by the Transverse
Merecator, it is still in limited use outside the United States and was one of the
major topographic mapping projections until the early 20th century. It was first
developed by César Francois Cassini de Thury (1714—1784), grandson of Jean
Dominique Cassini. The latter was an outstanding Italian-born astronomer who
changed his given names from Giovanni Domenico after being hired in 1669 for
astronomical research in Paris, and soon thereafter to begin the survey of France.
Cassini de Thury was the third of four generations involved in this project, the
first detailed survey of a nation. In 1745 he devised the projection which, with
some modifications, still bears the family name and was used for official topo-
graphic maps of France until its replacement by the Bonne projection in 1803.

Instead of showing meridians and parallels (except for the central meridian),
Cassini employed a system of squares with rectangular grid coordinates, the
meridian through Paris serving as one axis. The scale along this central meridian
was made correct according to the surveyed distance, thus approximately correct-
ing for the ellipsoid (Craig, 1882, p. 80; Reignier, 1957, p. 98—99). Mathematical
analysis by J. G. von Soldner in the early 19th century led to more accurate
ellipsoidal formulas, and the name Cassini-Soldner is often used for the form used
in topographic mapping.

FEATURES

The spherical form of the Cassini projection (fig. 19) bears the same relation to
the Equidistant Cylindrical or Plate Carrée projection that the spherical Trans-
verse Mercator bears to the regular Mercator. Instead of having the straight
meridians and parallels of the Equidistant Cylindrical, the Cassini has complex
curves for each, except for the Equator, the central meridian, and each meridian
90° away from the central meridian, all of which are straight.

There is no distortion along the central meridian, if it is maintained at true
scale, which is the usual case. If it is given a reduced scale factor, the lines of
true scale are two straight lines on the map parallel to and equidistant from the
central meridian. There is no distortion along them instead. This alternative is
rare enough that it is ignored in the discussion and formulas below.

By making a given point (such as Washington, D.C.) the pole on an oblique
Equidistant Cylindrical projection, the bearing and distance from that point to
any other on the Earth can be read directly as two rectangular coordinates
(Botley, 1951). This provides the same information as the oblique Azimuthal
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Equidistant projection centered on the same point. The oblique cylindrical has the
advantage of offering rectangular instead of polar coordinates, but the map is
much more distorted near the chosen point.

The scale is correct along the central meridian and also along any straight line
perpendicular to the central meridian. It gradually increases in a direction parallel
to the central meridian, as the distance from that meridian increases, but the
scale is constant along any straight line on the map which is parallel to the central
meridian. Therefore, the Cassini is more suitable for regions predominantly
north—south in extent, such as Great Britain, than for regions extending in other
directions. In this respect, it is also like the Transverse Mercator. The projection
is neither equal-area nor conformal, but it has a compromise of both features.

The ellipsoidal form is computed from series which are essentially modifica-
tions of those for the ellipsoidal form of the Transverse Mercator and are suitable
within only a few degrees to either side of the central meridian. The scale charac-
teristics described above for the spherical form apply to the ellipsoidal form, ex-
cept that the lines of constant scale paralleling the central meridian are not quite
straight.

USAGE

There has been little usage of the spherical version of the Cassini, but the ellip-
soidal Cassini-Soldner version was adopted by the Ordnance Survey for the official
survey of Great Britain during the second half of the 19th century (Steers, 1970,
p. 229). Many of these maps were prepared at a scale of 1:2,500. The Cassini-
Soldner was also used for the detailed mapping of many German states during the
same period.

Beginning about 1920, the Ordnance Survey began to change to the Transverse
Mercator because of the difficulty of measuring scale and direction on the Cassini.
Nevertheless, there are several maps still in print which are based on the older
projection in Great Britain, and the projection is used in a few other countries
such as Cyprus, Czechoslovakia, Denmark, the Federal Republic of Germany,
and Malaysia (Clifford J. Mugnier, personal comm., 1985).

A system equivalent to an oblique Equidistant Cylindrical or oblique Cassini
projection was used in early coordinate transformations for ERTS (now Landsat)
satellite imagery, but it was changed in 1978 to the Hotine Oblique Mercator, and
in 1982 to the Space Oblique Mercator projection.

FORMULAS FOR THE SPHERE

For the forward formulas, given R, &y, Ao, ¢, and A, to find z and y:

r =R arcsin B (13-1)

¥y = R larctan [tan d/cos (\—Ag)] — &y (13-2)

k' =1/1-B?w" (13-3)
where

B = cos ¢ sin (A—)() (8—5)

and A, is the central meridian. The origin of the coordinates is at (o, Ao).The Y
axis lies along the central meridian \,, y increasing northerly, and the X axis is
perpendicular, through &, at \,,  increasing easterly. Equation (13-2) is similar
to corresponding equation (8-3)* for the spherical Transverse Mercator projec-
tion. The scale factor is &’ in a direction parallel to the central meridian, while it
is 1 in a direction perpendicular to this meridian.

The inverse formulas for (¢, \) in terms of (x, y):

¢ = aresin [sin D cos (x/R)) (13-4)
A =\g + arctan [tan (x/R)/cos D] (13-5)

*if & = >90° and/or (A—A;) = =907,
¥ = R(x nf2—é,), taking sign of ¢ in either case.
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where
D =y/R + &, (13—6)

with ¢ and D in radians. See p. 288 for numerical examples.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, a set of series approximations is given for use in a
zone extending 3° to 4° of longitude from the central meridian. Coordinate axes are
the same as they are for the spherical formulas above. The formulas below are
adapted from those provided by Clifford J. Mugnier (pers. commun., 1979; see also
Clark and Clendinning, 1944).

r =N [A-TA%6—(8—T+8C)TA5120] (13-7)
y =M— My, + Ntan ¢ [A%2 + (5-T+6C)A%24] (13-8)
s =1+ r? cos® Az (1—¢? sin® $)%[2a%(1—¢€?)] (13-9)
where
N =al(l—¢? sin® ¢)* (4-20)
T =tan’¢ (8—13)
A = (A—\y) cos ¢, with A and A, in radians (8—15)
C  =¢é? cos® dp/(1—€%) (8—14)

M =a[(1-e*4-3c¢/64—-56%/256—. . .) b — (3e%/8
+ 3¢7/32+45¢%/1024 +. . .) sin 26 + (15¢%/256
+ 45¢%/1024+. . .) sin 4 — (35¢%/3072+. . ) sin 6 + .. .] 3-21)

with ¢ in radians. M is the true distance along the central meridian from the
Equator to ¢.

M, = M calculated for ¢, the latitude crossing the central meridian A, at the
origin of the x, y coordinates. The choice of &, does not affect the shape of the
projection.

s = the scale factor at an azimuth Az east of north for a given ¢ and .

For the inverse forndas:

& =d¢; — (N, tan &/R)ID*2-(1 +3T)) DY/24) (13-10)
N =\ + [D-T\D*3 + (1 + 3T)) T\D*/15)/cos &, (13-11)
where ¢, is the “footpoint latitude” or the latitude at the central meridian which
has the same y coordinate as that of the point (. A).
It may be found as follows:

o = + (Be/2—27e%32+. . ) sin 2u, + (21€,%16
= 55¢,%/32 + . ..)sin 4p, + (151¢,*96 + . ..) sin Gy,

+ (1097e,%/512 — . . .) sin 8y + . . . (3-26) .
where

er =[1=-(1=¢e212)[1+(1-¢%)¥ (3—-24)

= M /a1 -e%/4—3¢/64—56%/256—. . )] (7-19)

M=M, +y (13-12)

with M, calculated from equation (3-21) for the given ¢,. For improved compu-
tational efficiency using series (3—26), see p. 19.

From ¢,, other terms below are calculated for use in equations (13—10) and
(13-1D. (If ¢, = = /2, & = * 90°, taking the sign of y, while A is indeterminate,
and may be called A,.)

T, = tan® b, (8—22)
N, = al(1—¢? sin® ¢, )'* (8-23)
R, =a (1-e)/(1-¢? sin? ¢,)*2 (8—-24)
D =ux/N, (13-13)
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CONIC MAP PROJECTIONS

CONIC MAP PROJECTIONS

Cylindrical projections are used primarily for complete world maps, or for maps
along narrow strips of a great circle are, such as the Equator, a meridian, or an
oblique great circle. To show a region for which the greatest extent is from east to
west in the temperate zones, conic projections are usually preferable to cylindri-
cal projections.

Normal conic projections are distinguished by the use of arcs of concentric
circles for parallels of latitude and equally spaced straight radii of these circles for
meridians. The angles between the meridians on the map are smaller than the
actual differences in longitude. The circular arcs may or may not be equally
spaced, depending on the projection. The Polyconic projection and oblique conic
projections have characteristics different from these.

The name “conic” originates from the fact that the more elementary conic
projections may be derived by placing a cone on the top of a globe representing
the Earth, the apex or tip in line with the axis of the globe, and the sides of the
cone touching or tangent to the globe along a specified “standard” latitude which
is true to scale and without distortion (see fig. 1). Meridians are drawn on the
cone from the apex to the points at which the corresponding meridians on the
globe cross the standard parallel. Other parallels are then drawn as arcs centered
on the apex in a manner depending on the projection. If the cone is cut along one
meridian and unrolled, a conic projection results. A secant cone results if the cone
cuts the globe at two specified parallels. Meridians and parallels can be marked on
the secant cone somewhat as above, but this will not result in any of the common
conic projections with two standard parallels. They are derived from various
desired scale relationships instead, and the spacing of the meridians as well as the
parallels is not the same as the projection onto a secant cone.

There are three important classes of conic projections: the equidistant (or simple),
the conformal, and the equal-area. The Equidistant Conic, with parallels equidis-
tantly spaced, originated in a rudimentary form with Claudius Ptolemy. It eventu-
ally developed into commonly used present-day forms which have one or two
standard parallels selected for the area being shown. It is neither conformal nor
equal-area, but north-south scale along all meridians is correct, and the projection
can be a satisfactory compromise for errors in shape, scale, and area. especially
when the map covers a small area. It is primarily used in the spherical form,
although the ellipsoidal form is available and useful. The USGS uses the Equidistant
Conic in an approximate form for a map of Alaska, identified as a “Modified
Transverse Mercator” projection, and also in the limiting equatorial form: the
Equidistant Cylindrical. Both are described earlier.

The Lambert Conformal Conic projection with two standard parallels is used
frequently for large- and small-scale maps. The parallels are more closely spaced
near the center of the map. The Lambert has also been used slightly in the oblique
form. The Albers Equal-Area Conic with two standard parallels is used for sec-
tional maps of the U.S. and for maps of the conterminous United States. The
Albers parallels are spaced more closely near the north and south edges of the
map. There are some conic projections, such as perspective conics, which do not
fall into any of these three categories, but they are rarely used.

The useful conic projections may be geometrically constructed only in a limited
sense, using polar coordinates which must be calculated. After a location is chosen,
usually off the final map, for the center of the circular arcs which will represent
parallels of latitude, meridians are constructed as straight lines radiating from
this center and spaced from each other at an angle equal to the product of the cone
constant times the difference in longitude. For example, if a 10° graticule is planned,
and the cone constant is 0.65, the meridian lines are spaced at 10° times 0.65 or 6.5°.
Each parallel of latitude may then be drawn as a circular arc with a radius
previously calculated from formulas for the particular conic projection.
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14. ALBERS EQUAL-AREA CONIC PROJECTION
SUMMARY

« Conic.
¢ Equal-Area.
o Parallels are unequally spaced ares of concentric circles, more closely spaced at
the north and south edges of the map.
Meridians are equally spaced radii of the same circles, cutting parallels at right
angles.
« There is no distortion in scale or shape along two standard parallels, normally,
or along just one.
» Poles are arcs of circles.
e Used for equal-area maps of regions with predominant east-west expanse,
especially the conterminous United States.
e Presented by Albers in 1805.

HISTORY

One of the most commonly used projections for maps of the conterminous
United States is the equal-area form of the conic projection, using two standard
parallels. This projection was first presented by Heinrich Christian Albers
(1773—-1833), a native of Lineburg, Germany, in a German periodical of 1805
(Albers, 1805: Bonacker and Anliker, 1930). The Albers projection was used for a
German map of Europe in 1817, but it was promoted for maps of the United
States in the early part of the 20th century by Oscar S. Adams of the Coast
and Geodetic Survey as “an equal-area representation that is as good as any other
and in many respects superior to all others” (Adams, 1927, p. 1).

FEATURES AND USAGE

The Albers is the projection exclusively used by the USGS for sectional maps of
all 50 States of the United States in the National Atlas of 1970, and for other
U.S. maps at scales of 1:2,500,000 and smaller. The latter maps include the base
maps of the United States issued in 1961, 1967, and 1972, the Tectonic Map of the
United States (1962), and the Geologic Map of the United States (1974), all at
1:2,500,000. The USGS has also prepared a U.S. base map at 1:3,168,000
(1 inch =50 miles).

Like other normal conics, the Albers Equal-Area Conic projection (fig. 20) has
concentric ares of circles for parallels and equally spaced radii as meridians. The
parallels are not equally spaced, but they are farthest apart in the latitudes
between the standard parallels and closer together to the north and south. The
pole is not the center of the circles, but is normally an arc itself.

If the pole is taken as one of the two standard parallels, the Albers formulas
reduce to a limiting form of the projection called Lambert’s Equal-Area Conic
(not discussed here, and not to be confused with his Conformal Conic, to be
discussed later). If the pole is the only standard parallel, the Albers formulas
simplify to provide the polar aspect of the Lambert Azimuthal Equal-Area
(discussed later). In both of these limiting cases, the pole is a point. If the Equa-
tor is the one standard parallel, the projection becomes Lambert’s Cylindrical
Equal-Area (discussed earlier), but the formulas must be modified. None of these
extreme cases applies to the normal use of the Albers, with standard parallels in
the temperate zones. such as usage for the United States.

Scale along the parallels is too small between the standard parallels and too
large beyond them. The scale along the meridians is just the opposite, and in fact
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FI1GURE 20.—Albers Equal-Area Conic projection, with standard parallels 20” and 60° N. This illustra-
tion includes all of North America to show the change in spacing of the parallels. When used for
maps of the 48 conterminous States standard parallels are 29.5” and 45.5° N.

the scale factor along meridians is the reciprocal of the scale factor along parallels,
to maintain equal area. An important characteristic of all normal conic projections
is that scale is constant along any given parallel.

To map a given region, standard parallels should be selected to minimize varia-
tions in scale. Not only are standard parallels correct in scale along the parallel;
they are correct in every direction. Thus, there is no angular distortion. and
conformality exists along these standard parallels, even on an equal-area projection.
They may be on opposite sides of, but not equidistant from, the Equator. Deetz
and Adams (1934, p. 79, 91) recommended in general that standard parallels be
placed one-sixth of the displayed length of the central meridian from the northern
and southern limits of the map. Hinks (1912, p. 87) suggested one-seventh instead
of one-sixth. Others have suggested selecting standard parallels of conies so that
the maximum scale error (1 minus the scale factor) in the region between them is
equal and opposite in sign to the error at the upper and lower parallels, or so that
the scale factor at the middle paralle] is the reciprocal of that at the limiting
parallels. Tsinger in 1916 and Kavrayskiy in 1934 chose standard parallels so that
least-square errors in linear scale were minimal for the actual land or country
being displayed on the map. This involved weighting each latitude in accordance
with the land it contains (Maling, 1960, p. 263-266).

The standard parallels chosen by Adams for Albers maps of the conterminous
United States are lats. 29.5° and 45.5°N. These parallels provide “for a scale error
slightly less than 1 per cent in the center of the map, with a maximum of 14 per
cent along the northern and southern borders” (Deetz and Adams, 1934, p. 91).
For maps of Alaska, the chosen standard parallels are lats. 55° and 65°N., and for
Hawaii, lats. 8° and 18°N. In the latter case, both parallels are south of the
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islands, but they were chosen to include maps of the more southerly Canal Zone
and especially the Philippine Islands. These parallels apply to all maps prepared
by the USGS on the Albers projection, originally using Adams’s published tables
of coordinates for the Clarke 1866 ellipsoid (Adams, 1927).

Without measuring the spacing of parallels along a meridian, it is almost impos-
sible to distinguish an unlabeled Albers map of the United States from other conic
forms. It is only when the projection is extended considerably north and south,
well beyond the standard parallels, that the difference is apparent without scaling.

Since meridians intersect parallels at right angles, it may at first seem that
there is no angular distortion. However, scale variations along the meridians
cause some angular distortion for any angle other than that between the meridian
and parallel, except at the standard parallels.

FORMULAS FOR THE SPHERE

The Albers Equal-Area Conic projection may be constructed with only one
standard parallel, but it is nearly always used with two. The forward formulas for
the sphere are as follows, to obtain rectangular or polar coordinates, given R, ¢,
b, bor Ao, &, and A (see p. 291 for numerical examples):

r =psing (14-1)
Yy =py—pcosH (14-2)
where

p = R(C—2n sin &)/ (14-3)
8 = A=\ (14-4)
po = R(C—2n sin b)) (14-3a)
(' =cos? &; + 2n sin b, (14-5)
n = (8in &, +sin &,)/2 (14-6)

by, Ny = the latitude and longitude, respectively, for the origin
of the rectangular coordinates.
&), b = standard parallels.

The Y axis lies along the central meridian XA, y increasing northerly. The X axis
intersects perpendicularly at ¢,, r increasing easterly. If (A\—X,) exceeds the
range *180°, 360° should be added or subtracted to place it within the range.
Constants n, C, and p, apply to the entire map, and thus need to be calculated
only once. If only one standard parallel ¢, is desired (or if &; = &), n=sin ;.
By contrast, a geometrically secant cone requires a cone constant » of sin [(d; +
bs)/2], slightly but distincetly different from equation (14—86). If the projection is
designed primarily for the Northern Hemisphere, rn and p are positive. For the
Southern Hemisphere, they are negative. The scale along the meridians, using
equation (4—4),

h = cos $/(C—2n sin )12 14-7

If equation (4—5) is used, & will be found to be the reciprocal of h, satisfying
the requirement for an equal-area projection when meridians and parallels in-
tersect at right angles. The maximum angular deformation may be calculated
from equation (4-9). It may be seen from equation (14—7), and indeed from equa-
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tions (4—4) and (4—5), that distortion is strictly a function of latitude, and not of
longitude. This is true of any regular conic projection.

For the inverse formulas for the sphere, given R, ¢, da, &y, Ao, ¥, and y:
n, C and p, are calculated from equations (14—6), (14-5), and (14—3a), respec-
tively. Then,

& = arcsin [[C—(pr/R)?V(2n)] (14-8)

N =N+ 60/ (14-9)
where

p = [a?+(po—y)*P2 (14-10)

6 =arctan [x/(py—y)] (14—11)

Note: to use the ATAN2 Fortran function, if » is negative, the signs of x, y,
and p, (given a negative sign by equation (14—3a)) must be reversed before in-
serting them in equation (14 ~11).

FORMULAS FOR THE ELLIPSOID

The formulas displayed by Adams and most other writers describing the ellip-
soidal form include series, but the equations may be expressed in closed forms
which are suitable for programming, and involve no numerical integration or iter-
ation in the forward form. Nearly all published maps of the United States based
on the Albers use the ellipsoidal form because of the use of tables for the original
base maps. (Adams, 1927, p. 1-7; Deetz and Adams, 1934, p. 93—99; Snyder,
1979a, p. 71). Given a, e, &y, b3, do. Ay, &, and X (see p. 292 for numerical
examples):

xr =psin @ (14-1)
Y =po—pcos b (14-2)
where

p =alC—nghn (14—-12)
8 =n(A—Ag) (14—-4)
po = alC—ngy)*n (14—-12a)
C =nm2+nq (14~-13)
no=(m2—-mAHg,—qy) (14—-14)
m = cos d/(1—e” sin“dp)2 (14-15)
g = (1-ed)sin d/(1-¢® sin*d) — [1/(2e)]

In((1—e sin $)/(1 +e¢ sin &)} (3-12)

with the same subscripts 1, 2, or none applied to m and ¢ in equation (14—15),
and 0, 1, 2, or none applied to ¢ and ¢ in equation (3—12), as required by equa-
tions (14-12), (14-12a), (14-13), (14—14), and (14-17). As with the spherical
case, p and n are negative, if the projection is centered in the Southern Hemi-
sphere. For the scale factor, modifying (4-25):

k =pn/am (14—-16)
= (C—ng)'¥m (14-17)
h =1/k (14-18)

While many ellipsoidal equations apply to the sphere if e is made zero, equation
(3—12) becomes indeterminate. Actually, ife=0, g=2sin ¢. If ¢, = ¢, equation
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(14—-14) is indeterminate regardless of e, but » = sin &,. The axes and limita-
tions on (A—A\,) are the same as those stated for the spherical formulas. Here, too,
constants », C, and p, need to be determined just once for the entire map.

For the inverse fornudas for the ellipsoid, given a, e, &y, by, by, Ao, ¥, and y:
n, C, and p, are calculated from equations (14—14), (14-13), and (14-12a);
respectively. Then,

(1-e*sinf )| ¢ sin ¢ 1 1—e sin &
= = — ——F—+—In|—— 3-16
b=b+ 2 cos &b 1-¢*  1-¢®gin®d  2e <1+P sin ¢ ( )
A=A\, +0/n (14-9)

where

g = (C=p*n*a®m (14-19)
p =1+ (pg—y)P (14-10)
6 = arctan [+/(p,— )] (14-11)

To use the Fortran ATANZ function, if » is negative, the signs of @, y, and p,
must be reversed before insertion into equation (14—-11). Equation (3—16) in-
volves iteration by first trying & = arcsin (¢/2) on the right side, calculating ¢ on
the left side, substituting this new ¢ on the right side, etc., until the change in
& is negligible. If

g = = 1-[(1-¢%72e] In [(1~e)(1 + )] (14-20)

iteration does not converge, but & = *90°, taking the sign of ¢.
Instead of the iteration, a series may be used for the inverse ellipsoidal
formulas:

b =B+ (@*3+31eV180+ 517055040 + . . L) sin 28 + (23¢'/360
+ 2513780+ .. ) sin 4B+ (T616545360+ . . ) sin 6B+ . . . (3-18)

where B, the authalic latitude, adapting equations (3—11) and (3—12), is found
thus:

B = aresin (¢/'1-{(1—¢972¢] In [(1—e)(1 +€)]) (14-21)

but ¢ is still found from equation (14-19). Equations (14-9), (14—10), and
(14-11) also apply unchanged. For improved computational efficiency using the
series, see p. 19,

Polar coordinates for the Albers Equal-Area Conic are given for both the
spherical and ellipsoidal forms, using standard parallels of lat. 29.5° and 45.5° N.
(table 15). A graticule extended to the North Pole is shown in figure 20.

To convert coordinates measured on an existing map, the user may choose any
meridian for A, and therefore for the Y axis, and any latitude for &, The X
axis then is placed perpendicular to the Y axis at b,



TARLE 15.—Albers Equal-Area Conic projection: Polar coordinates

14. ALBERS EQUAL-AREA CONIC PROJECTION

Standard parallels: 29.5" and 5.5 N|

Projection for sphere (R=6,370,997 m) Projection for Clarke 1866 ellipsoid

(n=0.6028370)

(a=6,378,206.4 m) (n=0.6029035)

Lat. P h k p h k

52° ___ 6,693,511 0.97207 1.02874 6,713,781 0.97217 1.02863
51 ____ 6,801,923 97779 1.02271 6,822,266 97788 1.02263
50 ____ 6,910,941 98296 1.01733 6,931,335 98303 1.01727
49 ____ 7,020,505 .98760 1.01255 7,040,929 98765 1.01251
48 ___. 7,130,555 99173 1.00834 7,150,989 99177 1.00830
47 ____ 7,241,038 99538 1.00464 7,261,460 99540 1.00462
46 ___. 7,351,901 .99857 1.00143 7,372,290 99858 1.00143
45.5 __ 7,407,459 1.00000 1.00000 7,427,824 1.00000 1.00000
45 ____ 7,463,094 1.00132 99868 7,483,429 1.00132 99869
44 ____ 7,574,570 1.00365 99636 7,594,829 1.00364 99637
43 ____ 7,686,282 1.00558 99445 7,706,445 1.00556 99447
42 ____ 7,798,186 1.00713 99292 7,818,233 1,00710 99295
41 ____ 7,910,244 1.00832 99175 7,930,153 1.00828 99178
40 ____ 8,022,413 1.00915 99093 8,042,164 1.00911 99097
39 ____ 8,134,656 1.00965 99044 8,154,230 1.00961 99048
38 ____ 8,246,937 1.00983 99027 8,266,313 1.00978 99031
37 ____ 8,359,220 1.00970 99040 8,378,379 1.00965 199044
36 ____ 8,471,472 1.00927 99082 8,490,394 1.00923 .99086
35 ____ 8,583,660 1.00855 99152 8,602,328 1.00852 99155
34 ____ 8,695,753 1.00757 99249 8,714,149 1.00753 199252
33 ____ 8,807,723 1.00632 99372 8,825,828 1.00629 99375
32 ____ 8,919,539 1.00481 99521 8,937,337 1.00479 99523
31 .___ 9,031,175 1.00306 99694 9,048,649 1.00305 996956
30 ____ 9,142,602 1.00108 99892 9,159,737 1.00107 99893
295 __ 9,198,229 1.00000 1.00000 9,215,189 1.00000 1.00000
29 ____ 9,253,796 .99887 1.00114 9,270,575 99887 1.00113
28 ____ 9,364,731 .99643 1.00358 9,381,141 99645 1.00357
27 ____ 9,475,383 99378 1.00626 9,491,411 99381 1.00623
26 ____ 9,585,731 .99093 1.00915 9,601,361 99097 1.00911
25 ____ 9,695,749 98787 1.01227 9,710,969 98793 1.01222
24 ____ 9,805,417 98463 1.01561 9,820,216 98470 1.01554
23 ____ 9914713 98119 1.01917 9,929,080 98128 1.01908
22 ____10,023,616 97757 1.02294 10,037,541 97768 1.02283

Note: p = radius of latitude circle, meters.

h = scale factor along meridians.
k = scale factor along parallels.
R = assumed radius of sphere.

a = assumed semimajor axis of ellipsoid.
n = cone constant, or ratio of angle belween meridians on map to true angle.
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15. LAMBERT CONFORMAL CONIC PROJECTION

SUMMARY

Conic.

Conformal.

« Parallels are unequally spaced ares of concentric circles, more closely spaced
near the center of the map.

o Meridians are equally spaced radii of the same circles, thereby cutting parallels
at right angles.

o Scale is true along two standard parallels, normally, or along just one.

o Pole in same hemisphere as standard parallels is a point; other pole is at infinity.

» Used for maps of countries and regions with predominant east-west expanse.

« Presented by Lambert in 1772.

HISTORY

The Lambert Conformal Conic projection (fig. 21) was almost completely over-
looked between its introduction and its revival by the U.S. Coast and Geodetic
Survey (Deetz, 1918b), although France had introduced an approximate version,
calling it “Lambert,” for battle maps of the First World War (Mugnier, 1983). It
was the first new projection which Johann Heinrich Lambert presented in his
Beitrdge (Lambert, 1772), the publication which contained his Transverse Merca-
tor described previously. In some atlases, particularly British, the Lambert Con-
formal Conic is called the “Conical Orthomorphic” projection.

FicurE 21,—Lambert Conformal Conic projection, with standard parallels 20° and 60° N. North
America is illustrated here to show the change in spacing of the parallels. When used for maps of
the conterminous United States or individual States, standard parallels are 33° and 45° N.
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Lambert developed the regular Conformal Conic as the oblique aspect of a

family containing the previously known polar Stereographic and regular Mercator
projections. As he stated,
Stereographic representations of the spherical surface, as well as Mercator's nautical charts, have the
peculiarity that all angles maintain the sizes that they have on the surface of the globe. This yields
the greatest similarity that any plane figure can have with one drawn on the surface of a sphere. The
question has not been asked whether this property occurs only in the two methods of representation
mentioned or whether these two representations, so different in appearances, can be made to approach
each other through intermediate stages. * * * if there are stages intermediate to these two represen-
tations, they must be sought by allowing the angle of intersection of the meridians to be arbitrarily
larger or smaller than its value on the surface of the sphere. This is the way in which I shall now pro-
ceed (Lambert, 1772, p. 28. translation by Tobler).

Lambert then developed the mathematics for both the spherical and ellipsoidal
forms for two standard parallels and included a small map of Europe as an exam-
ple (Lambert, 1772, p. 28-38, 87-89).

FEATURES

Many of the comments concerning the appearance of the Albers and the selec-
tion of its standard parallels apply to the Lambert Conformal Conic when an area
the size of the conterminous United States or smaller is considered. As stated
before, the spacing of the parallels must be measured to distinguish among the
various conic projections for such an area. If the projection is extended toward
either pole and the Equator, as on a map of North America, the differences be-
come more obvious. Although meridians are equally spaced radii of the concentric
circular arcs representing parallels of latitude. the parallels become further apart
as the distance from the central parallels increases. Conformality fails at each
pole, as in the case of the regular Mercator. The pole in the same hemisphere as
the standard parallels is shown on the Lambert Conformal Conic as a point. The
other pole is at infinity. Straight lines between points approximate great circle
ares for maps of moderate coverage, but only the Gnomonic projection rigorously
has this feature and then only for the sphere.

Two parallels may be made standard or true to scale, as well as conformal. It is
also possible to have just one standard parallel. Since there is no angular distor-
tion at any parallel (except at the poles), it is possible to change the standard
parallels to just one, or to another pair, just by changing the scale applied to the
existing map and calculating a pair of standard parallels fitting the new scale. This
is not true of the Albers, on which only the original standard parallels are free
from angular distortion.

If the standard parallels are symmetrical about the Equator, the regular Mer-
cator results (although formulas must be revised). If the only standard parallel is
a pole, the polar Stereographic results.

The scale is too small between the standard parallels and too large beyond
them. This applies to the scale along meridians, as well as along parallels, or in
any other direction, since they are equal at any given point. Thus, in the State
Plane Coordinate Systems (SPCS) for States using the Lambert, the choice of
standard parallels has the effect of reducing the scale of the central parallel by
an amount which cannot be expressed simply in exact form, while the scale for the
central meridian of a map using the Transverse Mercator is normally reduced by
a simple fraction. The scale is constant along any given parallel. While it equals
the nominal scale at the standard parallels, it actually changes most slowly in a
north-south direction at a parallel nearly halfway between the two standard
parallels.

USAGE

It was only a couple of decades after the Coast and Geodetic Survey began
publishing tables for the Lambert Conformal Conic projection (Deetz, 1918a,
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1918b) that the projection was adopted officially for the SPCS for States of pre-
dominantly east-west expanse. The prototype was the North Carolina Coordinate
System, established in 1933. Within a year or so, similar systems were devised
for many other States, while a Transverse Mercator system was prepared for the
remaining States. One or more zones is involved in the system for each State (see
table 8) (Mitchell and Simmons, 1945, p. vi). In addition, the Lambert is used for
the Aleutian Islands of Alaska, Long Island in New York, and northwestern
Florida, although the Transverse Mercator (and Oblique Mercator in one case) is
used for the rest of each of these States.

The Lambert Conformal Conic is used for the 1:1,000,000-scale regional world
aeronautical charts, the 1:500,000-scale sectional aeronautical charts, and
1:500,000-scale State base maps (all 48 contiguous States* have the same standard
parallels of lat. 33° and 45° N., and thus match). Also cast on the Lambert are most
of the 1:24,000-scale 7%2-minute quadrangles prepared after 1957 which lie in zones
for which the Lambert is the base for the SPCS. In the latter case, the standard
parallels for the zone are used, rather than parameters designed for the individual
quadrangles. Thus, all quadrangles for a given zone may be mosaicked exactly.
(The projection used previously was the Polyconic, and some recent quadrangles
are being produced to the Universal Transverse Mercator projection.)

The Lambert Conformal Conic has also been adopted as the official topographic
projection for some other countries. It appears in The National Atlas (USGS,
1970, p. 116) for a map of hurricane patterns in the North Atlantic, and the Lam-
bert is used by the USGS for a map of the United States showing all 50 States
in their true relative positions. The latter map is at scales of both 1:6,000,000
and 1:10,000,000, with standard parallels 37° and 65° N.

In 1962, the projection for the International Map of the World at a scale of
1:1,000,000 was changed from a modified Polyconic to the Lambert Conformal
Conic between lats. 84° N. and 80° S. The polar Stereographic projection is used in
the remaining areas. The sheets are generally 6° of longitude wide by 4° of latitude
high. The standard parallels are placed at one-sixth and five-sixths of the latitude
spacing for each zone of 4° latitude, and the reference ellipsoid is the International
(United Nations, 1963, p. 9—27). This specification has been subsequently used
by the USGS in constructing several maps for the IMW series.

Perhaps the most recent new topographic use for the Lambert Conformal Conic
projection by the USGS is for middle latitudes of the 1:1,000,000-scale geologic
series of the Moon and for some of the maps of Mercury, Mars, and Jupiter’s
satellites (see table 6).

FORMULAS FOR ['HE SPHERE

For the projection as normally used, with two standard parallels, the equations
for the sphere may be written as follows: Given R, &,, bs, &g, Ao, &, and A (see
p. 295 for numerical examples):

x =psin 0 (14-1)
¥ =po — p cos O (14-2)
where
p =RF/tan” (n/d + $/2) (15-1)
8 = nh—\y) (14-4)
po = RF/tan” (/4 + &,/2) (15—1a)

*For Hawaii, the standaril parallels are lats. 20° 40° and 23° 20’ N.; the corresponding base map was not prepared
for Alaska.
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F =cos ¢, tan” (n/4 + $1/2)/n (15-2)

n = In (cos ¢,/cos dy)In(tan (m/d + by/2)/tan (w/d + &,/2)] (15-3)
b, Ay = the latitude and longitude for the origin of the rectangular coordinates.
&, ¢ = standard parallels.

The Y axis lies along the central meridian A\, y increasing northerly; the X axis
intersects perpendicularly at &, x increasing easterly. If (A—\,) exceeds the
range * 180°, 360° should be added or subtracted. Constants »n, F, and p, need to
be determined only once for the entire map.

If only one standard parallel ¢, is desired, equation (15—3) is indeterminate,
but 17 =sin ¢,. The scale along meridians or parallels, using equations (4—4) or
(4-5),

k=h=cos &, tan"(m/4 + ¢,/2)/[cos & tan"(m/4 + ¢/2)] (15-4)

The maximum angular deformation w =0, since the praojection is conformal. As
with the other regular conics, k is strictly a function of latitude. For a projection
centered in the Southern Hemisphere, » and p are negative.

Forthe inverse formulas for the sphere, given R, &,, &y, dq, Ao, @, and y: n, F,
and p, are calculated from equations (15—3), (15—2), and (15— 1a), respectively.
Then,

¢ =2 arctan (RF/p)"—n/2 (15-5)

N =6/ + N\, (14-9)
where

p = =[2® + (py—y)?]'?, taking the sign of n (14—10)

0 = arctan [x/(p,—)] (14-11)

The Fortran ATANZ2 function does not apply to equation (15—5), but when it is
used for equation (14—11), and » is negative, the signs of x, y, and p, (negative
from equation (15—1a)) must be reversed before insertion into the equation. If
p =0, equation (15—5) involves division by zero, but ¢ is = 90°, taking the sign of n.

The standard parallels normally used for maps of the conterminous United
States are lats. 33° and 45° N., which give approximately the least overall error
within those boundaries. The ellipsoidal form is used for such maps, based on the
Clarke 1866 ellipsoid (Adams, 1918).

The standard parallels of 33° and 45° were selected by the USGS because of the
existing tables by Adams (1918), but Adams chose them to provide a maximum
scale error between latitudes 30.5° and 47.5° of one-half of 1 percent. A maximum
scale error of 2.5 percent occurs in southernmost Florida (Deetz and Adams,
1934, p. 80). Other standard parallels would reduce the maximum scale error for
the United States, but at the expense of accuracy in the center of the map.

FORMULAS FOR THE ELLIPSOID

The ellipsoidal formulas are essential when applying the Lambert Conformal
Conic to mapping at a scale of 1:100,000 or larger and important at scales of
1:5,000,000. Given a, e, ¢,, by, dg, Ao, $, and A (see p. 296 for numerical examples):

r =psind (14-1)
Yy =py— pcosH (14-2)
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k = pn/(am) (14-16)
= m,t"/(mt,") (15-6)
where
p =afFtr a5-7
8 =n(A—\y 14-4)
po = aFty" (15—Ta)
n =(In m;—In my)/(In t;—In ¢t,;) (15—8)
m = cos d/(1—e” sin? $p)* (14-15)
t  =tan (m/d—d/2)/[(1—e sin &)/(1+ e sin )] (15-9)
or
1 — sin ¢\ /1 + esin o\ [
“I\1 + sin $/\1 — esin ¢ (15-9a)
F =my/nt" (156—-10)

with the same subscripts 1, 2, or none applied to m and & in equation (14—15),
and 0, 1, 2, or none applied to t and ¢ in equation (15—9), as required by equations
(15—6), (15-T), and (15—8). As with other conics, a negative n and p result for
projections centered in the Southern Hemisphere. If & = * 90°, p is zero for the
same sign as » and infinite for the opposite sign. If &, = &, for the Lambert with
a single standard parallel, equation (15—8) is indeterminate, but » = sin ¢,. Origin
and orientation of axes for » and y are the same as those for the spherical form.
Constants ». F, and p, may be determined just once for the entire map.

When the above equations for the ellipsoidal form are used, they give values
of n and p slightly different from those in the accepted tables of coordinates for a
map of the United States, according to the Lambert Conformal Conic projection.
The discrepancy is 35—50 m in the radius and 0.0000035 in ». The rectangular
coordinates are correspondingly affected. The discrepancy is less significant when
it is realized that the radius is measured to the pole, and that the distance from
the 50th parallel to the 25th parallel on the map at full scale is only 12 m out of
2,800,000 or 0.0004 percent. For calculating convenience 60 years ago, the tables
were, in effect, calculated using instead of equation (15-9),

t=tan (n/4—d,/2) (15—-9b)
where &, is the geocentric latitude, or, as shown earlier,
by =arctan [(1-¢*tan ¢] (3-28)

In conventional terminology, the ¢ of equation (15-9) is usually written as
tan %7, where Z is the colatitude of the conformal latitude x (see equation
3-1).

For the existing tables, then, &,, the geocentric latitude, was used for con-
venience in place of x, the conformal latitude (Adams, 1918, p. 6-9, 34). A com-
parison of series equations (3—3) and (3-30), or of the corresponding columns in
table 3, shows that the two auxiliary latitudes x and &, are numerically very
nearly the same.

There may be much smaller discrepancies found between coordinates as calcu-
lated on modern computers and those listed in tables for the SPCS. This is due
to the slightly reduced (but sufficient) accuracy of the desk calculators of 30—40
vears ago and the adaptation of formulas to be more easily utilized by them. To
obtain SPCS coordinates, the appropriate “false easting” is added to x after cal-
culation using (14-1).
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The inverse formulas for ellipsoidal coordinates, given a, e, ¢,, ¢z, by, Ay, X,
and y: n, F, and py are calculated from equations (15-8), (15-10), (15—7a),
respectively. Then,

b =m/2-2 arctan {t[{(1—e sin $)A1 + e sin )] (7-9
where
t = (plaF)" (15—11)
p = =[r%+(po—y)?)'?, taking the sign of n. (14—10)
A =0/, (14-9)
8 = arctan [x/(p,—y)] (14—-11)

As with the spherical formulas, the Fortran ATANZ2 function does not apply to
equation (7—9), but for equation (14—11), if » is negative, the signs of x, y, and
py must be reversed.

Equation (7-9) involves rapidly converging iteration: Calculate f from (15—11).
Then, assuming an initial trial ¢ equal to (w/2—2 arctan t) in the right side of
equation (7—9), calculate ¢ on the left side. Substitute the calculated & into the
right side, calculate a new &, ete.. until & does not change significantly from the
preceding trial value of ¢.

To avoid iteration, series (3—5) may be used with (7—13) in place of (7-9):

b=x + (642 + 5e'/24 + €12 + 137360 + . . .) sin 2x
+ (Te'/48 + 29¢9/240 + 811911520 + .. .)
sin dx + (7€%120 + 811120 + . . .) sin Gy
+ (4279¢7/161280 + .. .)sin 8x + ... (3—-3)

where

x =m/2—2 arctan ¢ (7T—13)

For improved computational efficiency using the series, see p. 19.

If rectangular coordinates for maps based on the tables using geocentlric lati-
tude are to be converted to latitude and longitude, the inverse formulas are the
same as those above, except that equation (15—9b) is used instead of (15-9) for
calculations leading to n, F, and p,. and equation (7-9), or (3—5) and (7—13), is
replaced with the following which does not involve iteration:

¢ = arctan [tan y/(1—¢”)] (15—-13)
where

by =m/2-2 arctan { (15—-14)

and f is calculated from equation (15~11).

Polar coordinates for the Lambert Conformal Conic are given for both the
spherical and ellipsoidal forms, using standard parallels of 33° and 45° N. (table 16).
The data based on the geocentric latitude are given for comparison. A graticule
extended to the North Pole is shown in figure 21.

To convert from tabular rectangular coordinates to ¢ and A, it is necessary to
subtract any “false easting” from & and “false northing” from y before inserting
x and y into the inverse formulas. To convert coordinates measured on an existing
Lambert Conformal Conic map (or other regular conic projection), the user may
choose any meridian for A, and therefore for the ¥ axis, and any latitude for &,.
The X axis then is placed perpendicular to the Y axis at &,.
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16. EQUIDISTANT CONIC PROJECTION

16. EQUIDISTANT CONIC PROJECTION
SUMMARY

« Conic.

e Equidistant.

e Parallels, including poles, are ares of concentric circles, equally spaced for the
sphere, at true spacing for the ellipsoid.

» Meridians are equally spaced radii of the same circles, thereby cutting parallels
at right angles.

e Scale is true along all meridians and along one or two standard parallels.

o Used for maps of small countries and regions and of larger areas with predomi-
nant east-west expanse.

o Rudimentary form developed by Claudius Ptolemy about A.D. 150.

HISTORY

The simplest kind of conic¢ projection is the Equidistant Conic, often called
Simple Conic, or just Conic projection. It is the projection most likely to be found
in atlases for maps of small countries, with its equally spaced straight meridians
and equally spaced circular parallels. A rudimentary version was described by the
astronomer and geographer Claudius Ptolemy about A.D. 150. Probably born in
Greece about A.D. 90, he spent most of his life in or near Alexandria, Egypt, and
died about A.D. 168. His greatest works were the Almagest, describing his
scientific theories, and the Geographia. which dwelt on mapmaking. These were
revived in the 15th century as the most authoritative existing standards.

In developing this projection, Ptolemy did not discuss cones, and a cone would
not properly fit his specifications, but he said (Geographia, Book 1, ch. 20):

When we cast a glance upon the mididle of the northern quarter of the globe in which the greatest part
of the oikumene [or ecumene, or inhabited world] lies, then the meridians give the impression of being
straight lines if we turn the globe thus thal the meridians successively come out of their sideward
situation right before the spectator, so that the eye comes in their plane. The parallels give clearly the
impression of arcs of circles which turn their convex side to the south (Keuning, 1955, p. 9).

Ptolemy's conic projection extends from latitudes approximating 63°N. to 16°S.
Although meridians north of the Equator fan out as straight radii from the center
of the circular parallels, they break at the Equator to connect with straight lines
to points along the southernmost parallel which are the same distance apart as
corresponding points at 16°N.

Johannes Ruysch (?—-1533) modified this approach to continue meridians as
straight radii below the Equator in a world map of 1508, and Gerardus Mercator
made other modifications in the mid-16th century. The Equidistant Conic with
two standard parallels is credited to Joseph Nicolas De I'Isle (1688—1768), of an
illustrious French mapmaking family. He used it for a map of Russia in 1745.
There were differences in his approach, however, which resulted in meridians
which are not radii of the circular ares representing the circles.

Several Scot (Murdoch), Swiss (Euler), English (Everett), and Russian
(Vitkovskiy, Kavrayskiy, and others) mathematicians published papers between
1758 and 1934 describing means of selecting the two standard parallels so that
distortion is minimized using various criteria. Each of them used the same basic
conic projection with concentric circular parallels and straight meridians for radii
(Snyder, 1978a). The name of one of them, V. V. Kavrayskiy (or Kavraisky), has
been mistakenly applied in some U.S. literature to the basic projection, but his
contribution did not occur until 1934.
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FEATURES

The Equidistant Conic projection (fig. 22) is neither conformal (like the Lam-
bert Conformal Conic) nor equal-area (like the Albers), but it serves as a compro-
mise between them. The Lambert parallels are more widely spaced away from
the central parallel, and the Albers parallels become closer together. The paral-
lels on the Equidistant Conic remain equally spaced on the spherical version (as
they are on the sphere) and nearly so on the ellipsoidal version (with the same
spacing as the distances along the meridians on the ellipsoid).

As on other normal conics, the meridians are equally spaced radii of the concen-
tric circular ares which form the parallels. The meridians are spaced at equal
angles which are less than the true angles between the meridians; the ratio is
called the cone constant, as it is on other conic projections. The poles are normally
also plotted as circular arcs.

Either one or two parallels may be made standard or true to scale. There is no
shape, area, or scale distortion along the standard parallels. While meridians are
at correct scale everywhere, the scale along the parallels between the standard
parallels (if there are two) is too small, and the scale along parallels beyond the
standard parallel(s) is too great.

If the one standard parallel is the Equator, the Equidistant Conic projection
becomes the Plate Carrée form of the Equidistant Cylindrical, but the formulas
must be changed. If the two standard parallels are symmetrical about the Equator,
the Equirectangular results. If the standard parallel is the pole, the Azimuthal
Equidistant projection is obtained.

Fisene 22.—Equidistant Conic projection, with standard parallels 20° and 60° N. All of North Amer-
ica is included to show that parallels remain equidistant. Compare figures 20 and 21.
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USAGE

The Equidistant Conic projection is commonly used in the spherical form in
atlases for maps of small countries. Its only use by the USGS has been in an
approximate ellipsoidal form for Alaska Maps “B” and “E,” but the projection
name applied is “Modified Transverse Mercator” (see p. 64), due to the original
manner of construction. The formulas for the ellipsoidal version were apparently
first published in Snyder (1978a), although there may be several de facto usages
of the ellipsoidal form such as the above. For example, the New Mexico Planning
Survey in effect devised such a projection in 1936 for the mapping of that State,
calling it a “Modified Conic Projection” (Thomas E. Henderson, pers. comm.,
1985).

FORMULAS FOR THE SPHERE

For the Equidistant Conic projection with two standard parallels, given R, ¢,,
&y, by, Ay, &, and X, to find x and y (see p. 298 for numerical examples):

r =psin6 (14-1)
Y =po—pcos B (14-2)
where
p =R (G-d) (16—1)
8 =0 (A=) (14-4)
Po = R (G_(b()) (16-2)
G = (cos dy)in+dod, (16—3)
7 = (cos by —cos du)da—d,) (16—4)

&y, Ao = the latitude and longitude for the origin of the rectangular coordinates.
&y, ¢, = standard parallels.

The Y axis lies along the central meridian A, y increasing northerly; the X axis
intersects perpendicularly at &,, » increasing easterly. If (A—\,) exceeds the
range *180°, 360° should be added or subtracted. Constants n, G, and p, need
to be determined only once for the entire map.

If only one standard parallel ¢, is desired, equation (16—4) is indeterminate,
but n = sin ¢,. The scale / along meridians is 1.0. Along parallels, using equation
(4-5), the scale is

k = (G=d)/cos ¢ (16-5)

The maximum angular deformation may be calculated from equation (4—9). As on
other regular conics, distortion is only a function of latitude.

Forthe inverse formulas for the spheve, given R, &y, &, by, Ao, t, and y, to find
& and A: n, G, and p, are calculated from equations (16—4), (16—3), and (16—2),
respectively. Then,

b =G - p/R (16-6)
N =ho + 8/ (14-9)

where
= = [22 + (py,—¥)?]'?, taking the signof n (14-10)

p
6 = arctan [2/(po—y)] (14—-11)
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To use the ATANZ2 function, if » is negative, the signs of x, y, and p, (given a
negative sign by equation (16—2)) must be reversed before inserting them in
equation (14—11).

FORMULAS FOR THE ELLIPSOID

For mapping of regions smaller than the United States at scales greater than
1:5,000,000, using the Equidistant Conic projection, the ellipsoidal formulas should
be considered. Given a, ¢, ¢y, dg, by, Ay, &, and X, to find x and y  (see p. 299
for numerical examples):

xr =psin @ (14-1)
Yy =po—p cos 0 (14-2)
k = pn/(am) (14~16)
=(G—M/ayn/m 16-7)

where
p =aG-M (16—8)
6 =n(A—\y (14—4)
po=a G-M, (16—-9)
w o= almy—m)(Ma—My) (16—10)
m = cos d/(1—e” sin” )2 (14-15)
G =nmyn + Ma (16—-11)

M

a [(1—e%/4—3e'/64—5¢"/256—. . )b

— (36%/8 + 3¢/32 + 45€%/1024 + . . .)sin 2¢

+ (15¢%/256 + 45691024 + . . .) sin 44

— (35653072 +. . ) sin6d + .. .] (3—-21)

with the same subscripts 1, 2, or none applied to m and ¢ in equation (14—15), and
0, 1, 2, or none applied to M and ¢ in equation (3—21). For improved computa-
tional efficiency using the series, see p. 19. As with other conics, a negative n and
p result for projections centered in the Southern Hemisphere. If ¢, = &5, for the
Equidistant Conic with a single standard parallel, equation (16—10) is indetermi-
nate, but n = sin ¢,. Origin and orientation of axes for x and y are the same as
those for the spherical form. Constants n, G, and p, may be determined just once
for the entire map.

For the inverse formulas for the ellipsoid, given a, e, &, d3, do, Ng, x, and y, to
find ¢ and A: n, G, and p, are calculated from equations (16—10), (16—11), and
(16-9), respectively. Then

b = pn + (3¢,/2-27¢,%32+ .. .) sin 2u + (21€,%/16—55¢,%32+ .. .)

sindp + (151¢%96~ . . .)sin 6p + (1097¢,%/512— . . )sin8u+ ... (3—26)
where
e, =[1 — (1-e®2Y[1 + (1 —e?)1?) (3—24)
B = M/la(1—-e%/4—3e'/64—5€°/256— . . .)] (7-19)
M=aG-p (16—12)
p = = [«®+(py—¥)?]'2, taking the sign of n (14-10)
N =Xy + 0/n (14-9)
8 = arctan [x/(ph—y)] (14—-11)

To use the ATANZ function, if » is negative, the signs of x, y, and p,, must be
reversed before inserting them in equation (14—11). For improved computational
efficiency using the series (3—26), see p. 19.
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Polar coordinates for the Equidistant Conic projection for a map of the United
States, assuming standard parallels of lat. 29.5° and 45.5°N., are listed in table 17
for both the spherical and ellipsoidal forms. A graticule extended to the North
Pole is shown in figure 22.

To convert coordinates measured on an existing Equidistant Conic map, the
user may choose any meridian for A, and therefore for the Y axis, and any latitude
for ¢,. The X axis then is placed perpendicular to the Y axis at d,.

TaBLE 17.—Equidistant Conic projection: Polar coordinates

(Standard parallels: 29.5¢, 45.5°N]

Projection for sphere (R =6.370,997 m) Projection for Clarke 1864 ellipsoid
(v = 0.60678564) (a = 6,378,206.4 m) (n = 0.606K355)

Lat. p 3 P k
52° 6,636,493 1.02665 6,656,864 1.02656
51 6,747,688 1.02120 6,768,123 1.02113
50 6,858,883 1.01628 6,879,362 1.01622
49 6,970,078 1.01186 6,990,581 1.01182
48 7,081,272 1.00792 7.101,781 1.00790
47 7,192,467 1.00444 7,212,961 1.00442
46 7,303,662 1.00138 7,324,122 1.00137
45.5 7,359,260 1.00000 7,379,695 1.00000
45 7,414,857 0.99872 7,435,263 0.99873
44 7,526,052 .99646 7.546,384 99648
43 7,637,247 99457 7,657,485 99460
42 7,748,442 .99304 7,768,566 .99307
41 7,859,637 -99186 7,879,628 .99189
40 7,970,831 99101 7,990,671 99105
39 8,082,026 .99048 8,101,694 .99052
38 8,193,221 .99026 8,212,697 .99030
37 8,304,416 .99035 8,323,682 .99039
36 8,415,611 .99073 8.434,648 99077
35 8,526,806 .99140 8,545,594 99144
34 8,638,001 .99235 8,656,523 .99239
33 8,749,196 .99358 8,767,433 .99361
32 8,860,390 -99508 8,878,325 .99511
31 8,971,585 .99685 8,989,199 99687
30 9,082,780 .99889 9,100,056 .99889
29.5 9,138,378 1.00000 9,155,478 1.00000
29 9,193,975 1.00118 9,210,896 1.00117
28 9,305,170 1.00373 9,321,720 1.00371
21 9,416,365 1.00654 9,432,527 1.00651
26 9,527,560 1.00960 9,543,318 1.00955
25 9,638,755 1.01291 9,654,093 1.01285
24 9,749,949 1.01648 9,764,854 1.01640
23 9,861,144 1.02030 9,875,600 1.02020
22 9,972,339 1.02437 9,986,332 1.02425

Note: p = radius of latitude circles, meters.
h = scale factor along meridians = 1.0,
k = scale factor along parallels.
R = assumed radius of sphere.
a = assumed semimajor axis of ellipsoid.
n = cone constant, or rativ of angle between meridians on map to true angle.
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17. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION

SUMMARY

Two oblique conic projections, side-by-side, but with poles 104° apart.

Conformal.

o Meridians and parallels are complex curves, intersecting at right angles.

o Scale is true along two standard transformed parallels on each conic projection,
neither of these lines following any geographical meridian or parallel.

« Very small deviation from conformality, where the two conic projections join.

» Specially developed for a map of the Americas.

¢ Used only in spherical form.

« Presented by Miller and Briesemeister in 1941.

HISTORY

A “tailor-made” projection is one designed for a certain geographical area.
0. M. Miller used the term for some projections which he developed for the Amer-
can Geographical Society (AGS) or for their clients. The Bipolar Oblique Conic
Conformal projection, developed with William A. Briesemeister, was presented
in 1941 and designed specifically for a map of North and South America con-
structed in several sheets by the AGS at a scale of 1:5,000,000 (Miller, 1941).

It is an adaptation of the Lambert Conformal Conic projection to minimize scale
error over the two continents by accommodating the fact that North America
tends Lo curve toward the east as one proceeds from north to south, while South
America tends to curve in the opposite direction. Because of the relatively small
scale of the map. the Earth was treated as a sphere. To construct the map, a great
circle arc 104° long was selected to cut through Central America from southwest to
northeast, beginning at lat. 20° S. and long. 110° W. and terminating at lat. 45° N.
and the resulting longitude of about 19°59'36” W.

The former point is used as the pole and as the center of transformed parallels
of latitude for an Oblique Conformal Conic projection with two standard parallels
(at polar distances of 31° and 73°) for all the land in the Americas southeast of the
104° great circle arc. The latter point serves as the pole and center of parallels for
an identical projection for all land northwest of the same arc. The inner and outer
standard parallels of the northwest portion of the map, thus, are tangent to the
outer and inner standard parallels, respectively, of the southeast portion, touch-
ing at the dividing line (104°-31°=173°).

The scale of the map was then increased by about 3.5 percent, so that the linear
scale error along the central parallels (at a polar distance of 52°, halfway between
31° and 73°) is equal and opposite in sign (— 3.5 percent) to the scale error along the
two standard parallels (now +3.5 percent) which are at the normal map limits.
Under these conditions, transformed parallels at polar distances of about 36.34°
and 66.58° are true to scale and are actually the standard transformed parallels.

The use of the Oblique Conformal Conic projection was not original with Miller
and Briesemeister. The concept involves the shifting of the graticule of meridians
and parallels for the regular Lambert Conformal Conic so that the pole of the
projection is no longer at the pole of the Earth. This is the same principle as the
transformation for the Oblique Mercator projection. The bipolar concept is unique,
however, and it has apparently not been used for any other maps.

FEATURES AND USAGE
The Geological Survey has used the North American portion of the map for the

Geologic Map (1965), the Basement Map (1967), the Geothermal Map, and the
Metallogenic Map, all retaining the original scale of 1:5,000,000. The Tectonic
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Map of North America (1969) is generally based on the Bipolar Oblique Conic
Conformal, but there are modifications near the edges. An oblique conic projec-
tion about a single transformed pole would suffice for either one of the continents
alone, but the AGS map served as an available base map at an appropriate scale.
In 1979, the USGS decided to replace this projection with the Transverse Merca-
tor for a map of North America.

The projection is conformal, and each of the two conic projections has all the
characteristics of the Lambert Conformal Conic projection, except for the impor-
tant difference in location of the pole, and a very narrow band near the center.
While meridians and parallels on the oblique projection intersect at right angles
because the map is conformal, the parallels are not arcs of circles, and the meridi-
ans are not straight, except for the peripheral meridian from each transformed
pole to the nearest normal pole.

The scale is constant along each circular arc centered on the transformed pole
for the conic projection of the particular portion of the map. Thus, the two lines at
a scale factor of 1.035, that is. both pairs of the official standard transformed
parallels, are mapped as circular arcs forming the letter “S.” The 104° great circle
arc separating the two oblique conic projections is a straight line on the map, and
all other straight lines radiating from the poles for the respective conic projec-
tions are transformed meridians and are therefore great circle routes. These
straight lines are not normally shown on the finished map.

At the juncture of the two conic projections, along the 104° axis, there is actually
a slight mathematical discontinuity at every point except for the two points at
which the transformed parallels of polar distance 31° and 73° meet. If the conic
projections are strictly followed, there is a maximum discrepancy of 1.6 mm at the
1:5,000,000 scale at the midpoint of this axis, halfway between the poles or between
the intersections of the axis with the 31° and 73° transformed parallels. In other
words, a meridian approaching the axis from the south is shifted up to 1.6 mm
along the axis as it crosses. Along the axis, but beyond the portion between the
lines of true scale, the discrepancy increases markedly, until it is over 240 mm at
the transformed poles. These latter areas are beyond the needed range of the map
and are not shown, just as the polar areas of the regular Lambert Conformal
Conic are normally omitted. This would not happen if the Oblique Equidistant
Conic projection were used.

The discontinuity was resolved by connecting the two ares with a straight line
tangent to both, a convenience which leaves the small intermediate area slightly
nonconformal. This adjustment is included in the formulas below.

FORMULAS FOR THE SPHERE

The original map was prepared by the American Geographical Society, in an
era when automatic plotters and easy computation of coordinates were not yet
present. Map coordinates were determined by converting the geographical coordi-
nates of a given graticule intersection to the transformed latitude and longitude
based on the poles of the projection, then to polar coordinates according to the
conformal projection, and finally to rectangular coordinates relative to the selected
origin.

The following formulas combine these steps in a form which may be programmed
for the computer. First, various constants are calculated from the above
parameters, applying to the entire map. Since only one map is involved, the
numerical values are inserted in formulas, except where the numbers are tran-
scendental and are referred to by symbols.

If the southwest pole is at point A, the northeast pole is at point B, and the
center point on the axis is C,
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Ag = —110° +arccosifcos 104° —sin(—20°)sin45°)/

[cos(—20°) cos 45°] (17-1)
= —19°59'36" long.. the longitude of B (negative is west long.)
n = (In sin 31°—In sin 73°)/(In tan (31°/2)—In tan (73°/2)] (17-2)
= 0.63056, the cone constant for both conic projections
Fo=R sin 31%[n tan"(31°/2)} (17-3)

=1.83376 R, where R is the radius of the globe at the scale of the map.
For the 1:5,000,000 map., R was taken as 6,371,221 m, the radius of a
sphere having a volume equal to that of the International ellipsoid.
ko=2/[1+ nF, tan” 26°/(R sin 52°)] (17-4)
=1.03462, the scale factor by which the coordinates are multiplied to balance
the errors
F=kJF, (17-5)
=1.89725 R, a convenient constant
Az, = arccos i[cos (—20°) sin 45°—sin (—20°) cos 45° cos
(A, + 110" )/sin 104° (17-6)
=46.78203°, the azimuth east of north of B from A

Az, = arccos [cos 45° sin (—20°)—sin 45° cos (—20°) cos
(A, + 110" Y/sin 104° (17-17)

=104.42834°, the azimuth west of north of A from B

T=tan” (31%/2)+ tan"(73°2) (17-8)
=1.27247, a convenient constant

p.=%FT (17-9)
=1.20709 K. the radius of the center point of the axis from either pole

2,=2 arctan (T/2)' (17-10)

= 52.0388R°, the polar distance of the center point {from either pole

Note that z. would be exactly 52°, if there were no discontinuity at the axis. The
values of &, A, and Az, are calculated as if no adjustment were made at the axis
due to the discontinuity. Their use is completely arbitrary and only affects posi-
tions of the arbitrary .X and ¥ axes, not the map itself. The adjustment is included
in formulas for a given point.

&, = aresin [sin (=20°) cos z,.+ cos (—20°) sin z.cos Az, ] 17-11)
=17°16"28" N. lat., the latitude of the center point, on the
southern-cone side of the axis
A, =aresin (sin z,sin Az Jeos d,)—110° (17-12)
= -73°00°27" long., the longitude of the center point, on the
southern-cone side of the axis
Az, =arcesin [cos (—20°) sin Az, ,/cos &, (17-13)
=45.81997°, the azimuth east of north of Lhe axis at the center point, relative
Lo meridian A, on the southern-cone side of the axis

The remaining equations are given in the order used, for calculating rectangu-
lar coordinates for various values of latitude & and longitude A (measured east
from Greenwich, or with a minus sign for the western values used here). There
are some conditional transfers and adjustments which would apply only if a map
extending well bevond the regions of interest were to be plotted; these are omit-
ted to avoid unnecessary complication. It must be established first whether point
(&, A) is north or south of the axis. to determine which conic projection is involved.
With these formulas, it is done by comparing the azimuth of point (¢, A) with the
azimuth of the axis, all as viewed from B (see p. 301 for numerical examples):

z,=arccos [sin 45° sin & + cos 45° cos & cos (A, —A)] (17-14)
= polar distance of (&, \) from pole B
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Az, = arctan |sin (\,~\)/|cos 45° tan $—sin 45° cos (\,—N)]i

=azimuth of (b, \) west of north, viewed from B

(17-15)

If Az, is greater than Az,, (from equation (17-7)), go to equation (17-23).

Otherwise proceed to equation (17—16) for the projection from pole B.

pp=F tan"lz,
k=pyn/(R sin z,)
= scale factor at point (¢, A), disregarding
small adjustment near axis
a = arccos |[tan”Vez,, + tanVe(104°~2,))/T}

If In (Az,,—Azy)l is less than a,
py’ =pylcos [a—n (Az,,—Az))]

If the above expression is equal to or greater than a,

'

pH = ph'
Then

x'=p, sin [0 (Az,, —Az,)]

y' =p, cosn (Az,,—Az)]—p,

(17-16)

(17-17)

(17-18)

(17-19)

(17-20)

(17-21)
(17-22)

using constants from equations (17-2), (17-3), (17-7), and (17-9) for rectangu-
lar coordinates relative to the axis. To change to nonskewed rectangular
coordinates, go to equations (17—32) and (17—-33). The following formulas give

coordinates for the projection from pole A.

A
polar distance of (b, A) from pole A

cos (A +110%))i
= azimuth of (d. A) east of north, viewed from A
= F tan"Vsz,
k= p,n/R sin z, =scale factor at point (¢, A)
a = arceos |[tan"Vez, +tan”%(104°=z )VTI

o
BN
I

If In (Az,,— Az )l is less than a,
P, =palcos [a+n (Az,,~Az))]
If the above expression is equal to or greater than «,

v

Py =Pas
Then

’

&

p, sin [n (Az,,—Az))]

’

y = —p, cos [n (Az,,—Az)]+p,
x=—-x'cos Az,—y’ sin Az,
¥y =—y' cos Az, +ux' sin Az,

z, = arccos [sin (—20°) sin ¢ + cos (—20°) cos ¢ cos (A +1107]

= arectan sin (A + 110°)/[cos (—20°) tan —sin (—20°)

(17-25)
(17-26)
17-2m

(17-28)

(17-29)

(17-30)
(17-31)
(17-32)
(17-33)

where the center point at (¢,, A.) is approximately the origin of (x, y) coordinates.
the Y axis increasing due north and the X axis due east from the origin. (The
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meridian and parallel actually crossing the origin are shifted by about 3’ of are,
due to the adjustment at the axis, but their actual values do not affect the
calculations here.)

For the inverse formulas for the Bipolar Oblique Conic Conformal, the con-
stants for the map must first be calculated from equations (17—-1)—(17—-13).
Given x and y coordinates based on the above axes, they are then converted to the
skew coordinates:

' = —x cos Az, +y sin Az, (17-34)
y' = —x sin Az.—y cos Az, (17-35)

If »" is equal to or greater than zero, go to equation (17-36). If ¥’ is negative,
go to equation (17—-45).

py =[x+ (p +y P2 (17-36)
Az, =arctan [x'/(p.+y")] (17-37)
Let
Py =0y (17-38)
z, =2 arctan (p,/F)'" (17-39)
a = arccos i[tan"‘/zz" +tan” l/z(l[)4"—z,,,)]/T} (17—-40)

If 1Azl is equal to or greater than a, go to equation (17—42). If 1Azl is less
than a, calculate

py=p, cos (a—Azg") (17—41)
and use this value to recalculate equations (17—39), (17—40), and (17—41), repeat-
ing until p, found in (17~41) changes by less than a predetermined convergence.

Then,

Az, =Az,,—Az,'/n (17-42)

Using Az, and the final value of z,,

& = arcsin (sin 45° cos z,, +cos 45° sin 2z, cos Az,) (17-43)
A = A,—arctan’sin Az, /lcos 45°/tan z,—sin 45° cos AzH]] (17—-44)

The remaining equations are for the southern cone only (negative ='):

p, =[r%+(p.—y")?N? (17—-45)
Az,' = arctan [x'/(p,—y")] (17—-46)
Let
py=p, 17-47)
2, =2 arctan (p,/F)'" (17-48)
a = arccos ![tan"Vez, + tan"¥4(104°—z ))/T) (17-49)

If 1Az,"t is equal to or greater than a, go to equation (17-51). If 1A2,'l is less
than a, calculate

py=p, cos (a+Az,") (17-50)
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FiuURre 23.—Bipolar Oblique Conie Conformal projection used for various geologic maps. The Amenri-
can Geographical Society, under 0. M. Miller. prepared the base map used by the USGS. (Pre-

pared by Tau Rho Alpha.)

and use this value to recalculate equations (17—48), (17—49), and (17-50), repeat-
ing until p, found in equation (17-50) changes by less than a predetermined
convergence. Then,

Az, =Az,,—Az,'In (17-51)

Using Az, and the final value of 2,

& = arcsin [sin (—20°) cos z, +cos 20° sin z, cos Az,] (17-52)
A = arctan lsin Az /[cos (-20°)/tan z,
—sin (-=20°) cos Az,]I—-110° (17-53)

Equations (17-17) or (17—26) may be used for calculating k after ¢ and A are
determined.

A table of rectangular coordinates is given in table 18, based on a radius R of
1.0, while a graticule is shown in figure 23.
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18. POLYCONIC PROJECTION

SUMMARY

Neither conformal nor equal-area.
Parallels of latitude (except for Equator) are arcs of circles, but are not
concentric.
Central meridian and Equator are straight lines; all other meridians are
complex curves.
e Scale is true along each parallel and along the central meridian, but no parallel
is “standard.”
e Free of distortion only along the central meridian.
e Used almost exclusively in slightly modified form for large-scale mapping in the
United States until the 1950’s.
e Was apparently originated about 1820 by Hassler.

HISTORY

Shortly before 1820, Ferdinand Rudolph Hassler (fig. 24) began to promote the
Polyconic projection, which was to become a standard for much of the official
mapping of the United States (Deetz and Adams, 1934, p. 58—60).

Born in Switzerland in 1770, Hassler arrived in the United States in 1805 and
was hired 2 years later as the first head of the Survey of the Coast. He was forced
to wait until 1811 for funds and equipment, meanwhile teaching to maintain
income. After funds were granted, he spent 4 years in Europe securing equipment.
Surveying began in 1816, but Congress, dissatisfied with the progress, took the
Survey from his control in 1818. The work only foundered. It was returned to
Hassler, now superintendent, in 1832. Hassler died in Philadelphia in 1843 as a
resull of exposure after a fall, trying to save his instruments in a severe wind and
hailstorm, but he had firmly established what later became the U.S. Coast and
Geodetic Survey (Wraight and Roberts, 1957) and is now the National Ocean
Service.

The Polyconic projection, usually called the American Polyconic in Europe,
achieved its name because the curvature of the circular arc for each parallel on the
map is the same as it would be following the unrolling of a cone which had been
wrapped around the globe tangent to the particular parallel of latitude, with the
parallel traced onto the cone. Thus, there are many (“poly-") cones involved,
rather than the single cone of each regular conic projection. As Hassler himself
described the prineiples, “[t]his distribution of the projection, in an assemblage of
sections of surfaces of successive cones, tangents to or cutting a regular succes-
sion of parallels, and upon regularly changing central meridians, appeared to me
the only one applicable to the coast of the United States” (Hassler, 1825,
p. 407-408).

The term “polyconic” is also applied generically by some writers to other
projections on which parallels are shown as circular arcs. Most commonly, the
term applies to the specific projection described here.

FEATURES

The Polyconic projection (fig. 25) is neither equal-area nor conformal. Along the
central meridian, however, it is both distortion free and true to scale. Each
parallel is true to scale, but the meridians are lengthened by various amounts to
cross each parallel at the correct position along the parallel, so that no parallel is
standard in the sense of having conformality (or correct angles), except at the
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F1GURE 24.—Ferdinand Rudolph Hassler (1770 - 1843), first Superintendent of the U8, Coast Survey
and presumed inventor of the Polyconic projection. As a result of his promotion of its uxe, it
became the projection exclusively used for USGS topographic quadrangles for about 70 years,

central meridian. Near the central meridian, which is the case with 7%-minute
quadrangles, distortion is extremely small. The Polyconic projection is universal
in that tables of rectangular coordinates may be used for any Polyconic projection
of the same ellipsoid by merely applying the proper scale and central meridian.
U.S. Coast and Geodetic Survey Special Publication No. 5 (1900) replaced tables
published in 1884 and was often reprinted because of the universality of the
projection (the Clarke 1866 is the reference ellipsoid). Polyconic quadrangle maps
prepared to the same scale and for the same central meridian and ellipsoid will fit
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FIGURE 25.—North America on a Polyconic projection grid, central meridian long. 100° W., using a
10° interval. The parallels are arcs of circles which are not concentric, but have radii equal to the
radius of curvature of the parallel at the Earth’s surface. The meridians are complex curves formed
by connecting points marked off along the parallels at their true distances. Used by the USGS
for topographic quadrangle maps.

exactly from north to south. Since they are drawn in practice with straight
meridians, they also fit east to west, but discrepancies will accumulate if mosaick-
ing is attempted in both directions.

The parallels are all circular arcs, with the centers of the ares lying along an
extension of the straight central meridian, but these arcs are not concentric.
Instead, as noted earlier, the radius of each arc is that of the circle developed
from a cone tangent tu the sphere or ellipsoid at the latitude. For the sphere, each
parallel has a radius proportional to the cotangent of the latitude. For the ellipsoid,
the radius is slightly different. The Equator is a straight line in either case. Along
the central meridian, the parallels are spaced at their true intervals. For the
sphere, they are therefore equidistant. Each parallel is marked off for meridians
equidistantly and true to scale. The points so marked are connected by the curved
meridians.

USAGE

As geodetic and coastal surveying began in earnest during the 19th century,
the Polyconic projection became a standard, especially for quadrangles. Most
coastal charts produced by the Coast Survey and its successor during the 19th
century were based on one or more variations of the Polyconic projection
(Shalowitz, 1964, p. 138—141). The name of the projection appears on a later
reprint of one of the first published USGS topographic quadrangles, which
appeared in 1886. In 1904, the USGS published tables of rectangular coordinates
extracted from an 1884 Coast and Geodelic Survey report. They were called
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“coordinates of curvature,” but were actually coordinates for the Polyconic
projection, although the latter term was not used (Gannett, 1904, p. 37—48).

As a 1928 USGS bulletin of topographic instructions stated (Beaman, 1928,
p. 163):

The topographic engineer needs a projection which is simple in construction, which can be used to
represent small areas on any part of the globe, and which, for each small area to which it is applied,
preserves shapes, areas, distances, and azimuths in their true relation to the surface of the earth. The
polyeonic projection meets all these needs and was adopted for the standard topographic map of the
United States, in which the 1° quadrangle is the largest unit * * * and the 15" quadrangle is the average
unit. * * * Misuse of this projection in atlempts to spread it over large areas—that is, to construct a
single map of a large area—has developed serious errors and gross exaggeration of details. For
example, the polyconic projection is not at all suitable for a single-sheet map of the United States or of
a large State, although it has been so employed.

When coordinate plotters and published tables for the State Plane Coordinate
System (SPCS) became available in the late 1950’s, the USGS ceased using the
Polyconic for new maps, in favor of the Transverse Mercator or Lambert Confor-
mal Conic projections used with the SPCS for the area involved. Some of the
quadrangles prepared on one or the other of these projections have continued to
carry the Polyconic designation, however.

The Polyconic projection was also used for the Progressive Military Grid for
military mapping of the United States. There were seven zones, A—G, with
central meridians every 8° west from long. 73° W. (zone A), each zone having an
origin at lat. 40°30’ N. on the central meridian with coordinates x=1,000,000
yards, y =2,000,000 vards (Deetz and Adams, 1934, p. 87—90). Some USGS quad-
rangles of the 1930's and 1940’s display tick marks according to this grid in yards,
and many quadrangles then prepared by the Army Map Service and sold by the
USGS show a complete grid pattern. This grid was incorporated intact into the
World Polyconic Grid (WPG) until both were superseded by the Universal Trans-
verse Mercator grid (Mugnier, 1983).

While quadrangles based on the Polyconic provide low-distortion mapping of
the local areas, the inability to mosaic these quadrangles in all directions without
gaps makes them less satisfactory for a larger region. Quadrangles based on the
SPCS may be mosaicked over an entire zone, at the expense of increased distortion.

For an individual quadrangle 7% or 15 minutes of latitude or longitude on a
side, the distance of the quadrangle from the central meridian of a Transverse
Mercator zone or from the standard parallels of a Lambert Conformal Conic zone
of the SPCS has much more effect than the type of projection upon the variation
in measurement of distances on quadrangles based on the various projections. If
the central meridians or standard parallels of the SPCS zones fall on the
quadrangle, a change of projection from Polyconic to Transverse Mercator or
Lambert Conformal Conic results in a difference of less than 0.001 mm in the
measurement of the 700—800 mm diagonals of a 7%-minute quadrangle. If the
quadrangle is near the edge of a zone, the discrepancy between measurements of
diagonals on two maps of the same quadrangle, one using the Transverse Merca-
tor or Lambert Conformal Conic projection and the other using the Polyconic, can
reach about 0.05 mm. These differences are exceeded by variations in expansion
and contraction of paper maps, so that these mathematical discrepancies apply
only to comparisons of stable-base maps.

Actually, the central meridian of a 7%-minute Polyconic quadrangle may lie
along the edge of the map, since 15-minute quadrangles were frequently cut and
enlarged to achieve the less extensive coverage. This has a negligible effect upon
the map geometry.

Before the Lambert became the projection for the 1:500,000 State base map
series, a modified form of the Polyconic was used, but the details are unclear. The
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Polyconic was used for the base maps of Alaska until 1972. It has also been used
for maps of the United States; but, as stated above, the distortion is excessive at
the east and west coasts, and most current maps are drawn to either the Lambert
or Albers Conic projections. There are several other modified Polyconic projections,
in use or devised, including the Rectangular Polyconic ancd Bousfield's modifica-
tion used for northern Canada (Haines, 1981). The best known is that used for the
International Map of the World, described on p. 131.

GEOMETRIC CONSTRUCTION

Because of the simplicity of construction using universal tables with which the
central meridian and each parallel may be marked off at true distances, the
Polyconic projection was favored long after theoretically better projections became
known in geodetic circles.

The Polyconic projection must be constructed with curved meridians and paral-
lels if it is used for single-sheet maps of areas with east-west extent of several
degrees. Then, however, the inherent distortion is excessive, and a different
projection should be considered. For accurate topographic work, the coverage
must remain so small that the meridians and parallels may ironically but satisfac-
torily be drawn as straight-line segments. Official USGS instructions of 1928
declared that
= * % in actual practice on projections of small quadrangles. the parallels are not drawn as ares of
circles. bul their intersections with the meridians are plotted from the computed » and y values, and
the sections of the parallels between adjacent meridians are drawn as straight lines. In polyconic
projections of quadrangles of 1 or smaller meridians may be drawn as straight lines, and in large-scale
projections of small quadrangles in low latitudes both meridians and parallels may be drawn as
straight lines. For example, the curvature of the parallels of a projection of a 15 quadrangle on a scale
of LR,000 in Jatitudes from 0° to 300 is <o small that it can not be plotted, and for a 72’ quadrangle on a
scale of 131,680 or larger the curvature can not be plotted at any latitude (Beaman, 1928, p. 167).

This instruction is essentially repeated in the 1964 edition (USGS, 1964, p. 12-13).
The formulas given below are based on curved meridians.

FORMULAS FOR THE SPHERE
The principles stated above lead to the following forward formulas for rectangu-

lar coordinates for the spherical form of the Polyconic projection, using radians
(see p. 303 for numerical examples):

If & is 0,
r =R(A-\,) (7—-D1
y =—Rd, (18-1)
If ¢ is not 0,
E =(\-A)sind (18-2)
r =Rcot bsin £ (18-3)
¥ =Rib—d, + cot & (1—cos E)} (18—-4)

where &, is an arbitrary latitude (frequently the Equator) chosen for the origin of
the rectangular coordinates at its intersection with \,, the central meridian. As
with other conies and the Transverse Mercator, the Y axis coincides with the
central meridian, y increasing northerly, and the X axis intersects perpendicu-
larly at &, » increasing easterly. If (\—A,) exceeds the range +180°, 360° must be
added or subtracted to place it within the range. For the scale factor / along the
meridians (Adams, 1919, p. 144—-147):
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h=(1—cos? ¢ cos E)/(sin® ¢ cos D) (18-5)
where
D =arctan [(E —sin E)/(sec® ¢—cos E)] (18—-6)

If ¢ is 0, this is indeterminate, but % is then [1+ (A—A)%*2]. In all cases, the scale
factor k along any parallel is 1.0.

The inverse formulas for the sphere are given here in the form of a Newton-
Raphson approximation, which converges to any desired accuracy after several
iterations, except that if IN—X\gl >90°, a rarely used range, this iteration does not

converge, and if ¥y = —Rd,, it is indeterminate. In the latter case, however,
¢ =0
N =a/R+X\, (7-5)

Otherwise, if y+ —Rd,, calculations are made in this order:

A =¢y + yR (18-7
B = x?R?+ A? (18-8)

Using an initial value of ¢, =A, &, . is found from equation (18—9),

d)n +17 d)n_[A(d)n tan d)n + l)_‘bn_l/z(d)n2 +B) tan d)n]/
[($,—A)tan ¢, —1] (18—-9)

The new trial value of ¢,, , | is successively substituted in place of &,,, until ¢, ,
differs from ¢, by less than a predetermined convergence limit. Thend=¢,, | as
finally determined.

A =[aresin (x tan ¢/R))/sin &+ X, (18-10)

If = £90°, equation (18—10) is indeterminate, but A may be given any value, such
as Aq.

FORMULAS FOR THE ELLIPSOID

The forward formulas for the ellipsoidal form of the Polyconic projection are
only a little more complicated than those for the sphere. These formulas are
theoretically exact. They are adapted from formulas given by the Coast and
Geodetic Survey (1946, p. 4) (see p. 304 for numerical examples):

If ¢ is zero:

x =a(h—\y) (7-6)

y =—M, (18—-11)
If ¢ is not zero:

E =(\-)\y) sin ¢ (18-2)

© =N cot dsinE (18-12)

y =M-My+N cot & (1-cos E) (18-13)

where

M =al(1-e%/4—3e'/64—5e%/256—. . .) b—(3¢%/8 + 3¢*/32 + 45¢°/1024
+. .. ) sin 2¢ +(15¢/256 + 45¢%1024 + . . .) sin 4¢—(35¢%/3072
+...)sin6p+ ...] (3-21)
N =a/(1-e? sin®d)\2 4-20)
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and M, is found from equation (3—21) by using ¢, for ¢ and M, for M, with
& the latitude of the origin of rectangular coordinates at its intersection with
central meridian Ay. See the spherical formulas for the orientation of axes. The
value of (A—\,) must be adjusted by adding or subtracting 360° if necessary to fall
within the range of +180°. For scale factor h along the meridians (k=1.0 along
the parallels):

If ¢ is zero,

h=[M"+Ya(h =l li(1—e?) (18-14)

If ¢ is not zero (Adams, 1919, p. 144-146),

h=[1—-¢%+2(1—¢? sin® ¢) sin? Y Eftan® ¢p)/[(1—e?) cos D] (18—15)
where
D = arctan !(E —sin E)/[sec® d—cos E —e? sin? ¢/(1—e?® sin® ¢)]! (18—16)
M’ = 1-e%4-3¢/64-5e%/256— . . . —2 (3e%/8 + 3¢/32 + 45¢°/1024
+...)cos 2d+4 (15¢'/256 + 45¢%/1024 + . . .) cos 4¢—6
(35¢"/ 3072+ . .. ) cos 6b+ .. .. (18-17

For improved computational efficiency using this series, see p. 19.

As with the inverse spherical formulas, the inverse ellipsoidal formulas are
given in a Newton-Raphson form, converging to any desired degree of accuracy
after several iterations. As before, if IN—X\g1>90° this iteration does not converge,
but the projection should not be used in that range in any case. The formulas
may be calculated in the following order, given a, e, &g, Ay, ¥, and y. First
M, is calculated from equation (3—21) above, as in the forward case, with &,
for ¢ and M, for M.

If y=-M,, the iteration is not applicable, but

b =0
N =wla+ ) (7-12)

If y#+ —M,, the calculation is as follows:

A =(My+y)a (18—18)
B = *a®+ A® (18-19)

Using an initial value of ¢, = A, the following calculations are made:
C =(1-¢*sin® ¢,)'? tan ¢, (18-20)

Then M, and M, are found from equations (3—21) and (18—17) above, using
o, for &b, M, for M, and M’ for M'. Let M =M /a.

b, +1=0,—[ACM,+ 1)—M,— (M2 + B)CY[e* sin 2¢, (M 2+ B—-24AM )
4C+(A-M,) (CM,’ —2/sin 2¢,)-M,’] (18-21)

Each value of ¢, , is substituted in place of ,, and C, M,, M,’, and ¢, , | are
recalculated from equations (18—-20), (3—21), (18—17), and (18—21), respectively.
This process is repeated until ¢,, , | varies from ¢, by less than a predetermined
convergence value. Then ¢ equals the final ¢, , ;.

A =[aresin (xC/a)}sin ¢ + Aq (18-22)
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using the C calculated for the last ¢, from equation (18—20). If = +90° A is in-
determinate, but may be given any value.

Table 19 lists rectangular coordinates for a band 3° on either side of the central
meridian for the ellipsoid extending from lat. 23° to 50° N. Figure 25 shows the
graticule applied to a map of North America.

MODIFIED POLYCONIC FOR THE INTERNATIONAL MAP OF THE WORLD

A modified Polyconic projection was devised by Lallemand of France and in
1909 adopted by the International Map Committee (IMC) in London as the basis
for the 1:1,000,000-scale International Map of the World (IMW) series. Used for
sheets 6° of longitude by 4° of latitude between lats. 60° N. and 60° S., 12° of longi-
tude by 4°oflatitude between lats. 60°and 76°N. or S., and 24° by 4° bet ween lats. 76°
and 84° N. or 8., the projection differs from the ordinary Polyconic in two principal
features: All meridians are straight, and there are two meridians (2° east and west
of the central meridian on sheets between lats. 60° N. & S.) that are made true to
scale. Between lats. 60° & 76° N. and S., the meridians 4° east and west are true to
scale, and between 76° & 84°, the true-scale meridians are 8° from the central
meridian (United Nations, 1963, p. 22—-23; Lallemand, 1911, p. 559).

The top and bottom parallels of each sheet are nonconcentric circular arcs
constructed with radii of N cot ¢, where N = a/(1~¢? sin® )2, These radii are the
same as the radii on the regular Polyconic for the ellipsoid, and the arcs of these
two parallels are marked off true to scale for the straight meridians. The two
parallels, however, are spaced from each other according to the true scale along
the two standard meridians, not according to the scale along the central meridian,
which is slightly reduced. The approximately 440 mm true length of the central
meridian at the map scale is thereby reduced by 0.270 to 0.076 mm, depending on
the latitude of the sheet. Other parallels of lat. & are circular arcs with radii N cot
&, intersecting the meridians which are true to scale at the correct points. The
parallels strike other meridians at geometrically fixed locations which slightly
deviate from the true scale on meridians as well as parallels.

With this modified Polyconic, as with USGS quadrangles based on the rectified
Polyconie, adjacent sheets exactly fit together not only north to south, but east to
west. There is still a gap when mosaicking in all directions, in that there is a gap
between each diagonal sheet and either one or the other adjacent sheet.

In 1962, a U.N. conference on the IMW adopted the Lambert Conformal Conic
and Polar Stereographic projections to replace the modified Polyconic (United
Nations, 1963, p. 9—10). The USGS has prepared a number of sheets for the IMW
series over the years according to the projection officially in use at the time.

FORMULAS FOR THE IMW MODIFIED POLYCONIC

Since the projection was designed solely for this series, the formulas below are
based on the ellipsoid. They were derived in 1982 (Snyder, 1982b). The following
symbols are used in these formulas:

a = semimajor axis on the given reference ellipsoid

C = distance on the map of latitude & from latitude ¢,, measured along the
central meridian of longitude A,

Cz = distance on the map of latitude ¢, from latitude ¢,, measured along the
central meridian of longitude A\,

e = eccentricity of the given reference ellipsoid

M = distance on the ellipsoid along any meridian from the Equator to ¢

M, =ditto for ¢,
M, =ditto for ¢,
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TaBLE 19.—Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid

[v coordinales in parentheses under x coordinates. Italic indicales h]

Long. A 0° 1° 2° 3°
Lat. ¢

50° . 0 71,696 143,379 215,037
(5,540,628) (5,541,107) (5,542,545) (5,544,941)

1.000000 1.000063 1.000252 1.000568

49 __________ 0 73,172 146,331 219,465
(5,429,409) (5,429,890) (5,431,336) (5,433,745)

1.000000 1.000066 1.000263 1.000592

48 0 74,626 149,239 223,827
(5,318,209) (5,318,693) (5,320,144) (5,322,564)

1.000000 1.000068 1.000274 1.000616

a7 0 76,056 152,100 228,119
(5,207,028) (5,207,514) (5,208,970) (5,211,397)

1.000000 1.000071 1.000284 1.000640

46 0 77,464 154,915 . 232,342
(5,095,868) (5,096,354) (5,097,813) (5,100,244)

1.000000 1.00007} 1.000295 1.000664

45 _________ 0 78,847 157,682 236,493
(4,984,727) (4,985,214) (4,986,673) (4,989,106)

1.000000 1.000076 1.000306 1.000688

44 0 80,207 160,401 240,572
(4,873,606) (4,874,092) (4,875,551) (4,8717,982)

1.000000 1.000079 1.000816 1.000712

43° 0 81,541 163,071 244,578
(4,762,505) (4,762,990) (4,764,446) (4,766,872)

1.000000 1.000082 1.000827 1.000786

[ — 0 82,851 165,691 248,508
(4,651,423) (4,651,907) (4,653,358) (4,655,777)

1.000000 1.000084 1.000838 1.000760

41 0 84,136 168,260 252,363
(4,540,361) (4,540,843) (4,542,288) (4,544,696)

1.000000 1.000087 1.000848 1.000784

40 __________ 0 85,394 170,778 266,140
(4,429,319) (4,429,798) (4,431,235) (4,433,630)

1.000000 1.000090 1.000359 1.000808

39 0 86,627 173,243 269,839
(4,318,296) (4,318,772) (4,320,199) (4,322,677)

1.000000 1.000092 1.000869 1.000881

8 __ 0 87,833 175,656 263,468
(4,207,292) (4,207,764) (4,209,180) (4,211,539)

1.000000 1.000095 1.000880 1.000855

37 e 0 89,012 178,015 266,997
(4,096,308) (4,096,775) (4,098,178) (4,100,616)

1.000000 1.000098 1.000890 1.000878

36 0 90,164 180,319 270,455
(3,985,342) (3,985,805) (3,987,192) (3,989,504)

1.000000 1.000100 1.000400 1.000901
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TABLE 19.—Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid—Continued

Long. A 0° 1° 2° 3°
Lat. ¢

35 e 0 91,289 182,568 273,830
(3,874,395) (3,874,852) (3,876,223) (3,878,507)

1.000000 1.000108 1.000411 1.000924

34 _ 0 92,385 184,762 277,121
(3,763,467) (3,763,918) (3,765,270) (3,767,524)

1.000000 1.000105 1.000421 1.000946

33 0 93,454 186,899 280,328
(3,652,557) (3,653,001) (3,654,333) (3,656,554)

1.000000 1.000108 1.000481 1.000969

32 0 94,494 188,980 283,449
(3,541,665) (3,542,102) (3,543,413) (3,645,597)

1.000000 1.000110 1.000440 1.000991

31 0 95,505 191,002 286,484
(3,430,790) (3,431,220) (3,432,507) (3,434,653)

1.000000 1.000112 1.000450 1.001012

30 0 96,487 192,967 289,432
(3,319,933) (3,320,354) (3,321,617) (3,323,722)

1.000000 1.000115 1.000459 1.001083

29 0 97,440 194,872 292,291
(3,209,093) (3,209,506) (3,210,742) (3,212,803)

1.000000 1.000117 1.000468 1.001054

28 0 98,363 196,719 295,062
(3,098,270) (3,098,673) (3,099,882) (3,101,897)

1.000000 1.000119 1.000477 1.001074

27° e ____ 0 99,256 198,505 297,742
(2,987,463) (2,987,856) (2,989,036) (2,991,002)

1.000000 1.000122 1.000486 1.001094

26 __ 0 100,119 200,231 300,332
(2,876,672) (2,877,055) (2,878,204) (2,880,119)

1.000000 1.000124 1.000495 1.001118

25 0 100,951 201,896 302,831
(2,765,896) (2,766,269) (2,767,386) (2,769,247)

1.000000 1.000126 1.000508 1.001182

24 __________ 0 101,753 203,500 305,237
(2,655,136) (2,655,497) (2,656,580) (2,658,386)

1.000000 1.000128 1.000511 1.001150

23 . 0 102,523 205,042 307,551
(2,544,390) (2,544,739) (2,545,788) (2,547,536)

1.000000 1.000130 1.000519 1.001168

Note: r, y = rectangular coordinales, meters; origin at $=0, A=0. Y axis increasing north.
h = scale factor along meridian.
k = scale factor along parallel = 1.0.
A = longilude east of central meridian. For longitude wesl of central meridian reverse sign of r.
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R = radius of circular arc for latitude ¢ as shown on map
R, =ditto for &,
R, =ditto for &,

(x, ¥) = rectangular coordinates, with the origin at the intersection of ¢, with
Ao, the y axis coinciding with the meridian of longitude A, y increasing
northerly, and the . axis perpendicular, x increasing easterly

A = longitude of any meridian (east longitude is positive)

Ao = longitude of central meridian

A = longitude of true-to-scale meridian east of the central meridian, 2°
more than A\, for most quadrangles

) = any geodetic (or geographic) latitude on the quadrangle map

&, = geodetic latitude of the northernmost parallel of a given quadrangle
map (north latitude is positive)

&, = geodetic latitude of the southernmost parallel of the quadrangle map

Care must be taken to use radians wherever angles are used without trigonomet-
ric functions.
The following constants apply to the entire map, given qa, ¢, &,, &5, Ay, and Ag:

x, =R,sinF, (18—-23)
¥y, =R, (1-cos F)) (18—24)
Ty, =R, (1—cos F,) (18—-25)

where » = 1 and 2, and

R, =a cot ,/(1—¢* sin? &,)!? (18—-26)
F, = (=)o) sin , (18-27)

with subscripts as required above, but if 4, = 0, R, is infinite and equations
(18—23) and (18—24) are indeterminate, but y, = 0, T, = 0, and

T, =a =) (18—23a)

Also for the entire map,

Yo =[(Ma—M)? — (xy— 2212 + 3, (18—-28)
Cy =y, — T, (18~-29)
P =My, —M y)(Ms—M,) (18-30)
Q = (yu—y)(Ms—M)) (18-31)
P = (Mur —Mx)(My—M)) (18-32)
Q' = (ro—rM,—M) (18-33)
where
M, =a[(1-e%4—3e"/64—5e°/256— . . .) b,

— (3¢%/8 + 3¢%/32 + 45¢/1024 + . . . )sin 2¢,,
+ (156%/256 + 456571024 + . . . ) sin 4o,
~ (35¢%3072+ .. .)sin 6b, + ... | (3-21)

with subseripts as required above.
The following values are calculated for each point, given & and \; to find .r and y:

rg =P+ QM (18-34)
Yo =P + QM (18-35)
C =ya— R = (RE—r D2 (18-36)
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where the = takes the same sign as ¢. If & = 0. equation (18— 36} is indeterminate,
but C = 0. M and R are found from (3—21) and (18—26), respectively, omitting
subscripts n. Then

xrp = Ry sin [(A=Ay) sin bgl (18—37)

w =C. + R, i1 — cos [(A—X,) sin by} (18-38)

x. =R, sin [(A—\g) sin &y} (18—39)

ye =Ry 11 — cos [(A=Ag) sin &y (18-40)
but if ¢, = 0,

xp =a (A=A (18—37a)

w =Ce (18—38a)
orif ¢; = 0,

xe =a (A=Ag) (18—39a)

Yy =0 (18-40a)
Then

D =(y—xyn—ye) (18—41)

B =x.+ D(C+R-y.) (18—42)

¥ =B = DI[R?A+D)H=B 1'%/ +D¥ (18-43)

y =C + R+ (RP—a®) (18-44)

where the =+ in (18—43) and (18 —44) takes the sign opposite thatof ¢. If b = 0. B
and R are infinite, but

xr =a(h—Ay (18—-45)
y =C (18—-46)

For the inverse formulas for the IMW Modified Polyconic, given a, e, by, b,
A1, Ao, x and y, to find & and \:
Step 1: Constants are calculated: xy, Xy, ¥, My, My, y2, C2. P, Q, P’, and Q'
from above equations (18—23) through (18-33) and (3—-21).
Step 2: A first trial (6, ), called (&, As,) are calculated:

b, =2 (18-47)
Ay, =[alla cos &¢)] + Ay (18-48)

Step 3: The first test values of (i, ¥), called (xy,, y), are calculated from (dy , A)),
using the latter as (b, N) in equations (18—34) through (18—46).

Step 4: Test values (r, ¥,) are used with the given (x. y) to adjust (d,, N\y,), to

provide second trial values of (dby,, A,):

by, ={dy,—d) Y=y Iy, —ye)) + &y (18—49)
A, =1 =Nadx/eg ] + Ao (18—-50)

Step 5: Step 3 is repeated, but using (dy,, A1) as (¢, A) to obtain (v, y,). Step 4 is
then repeated, replacing suchrlpte (1, 12) with (¢2, t3), recpectlvel\ Steps 3
and 4 are repeated, changing subscripts, until the final (x4, ¥y,) vary from
(x, y), respectively, by an acceptable total absolute error, such as 1 meter
(0.001 mm at map scale).
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TABLE 20.-—Modified Polyconic projection for IMW:
Rectangular coordinates for the International ellipsoid

Latitude Longitude difference (A — )
0° SN x2° +3°
Rectangular coordinates (+x, y) meters
40° 0.0 85395.9 170781.1 256144.8
443829.1 444308.8 445745.8 448140.6
39 0.0 86588.8 173167.1 259724.5
332842.0 333317.3 334743.2 337119.6
38 0.0 87781.4 175552.7 263303.7
221874.6 222345.9 223759.9 226116.3
37 0.0 88973.9 177937.9 266882.3
110927.3 111394.4 112795.5 115130.6
36 0.0 90166.1 180322.7 270460.3
0.0 462.5 1850.0 4162.2
Scale factors (&, k)
40° 0.999641 0.999730 1.000000 1.000449
1.000000 1.000000 1.000000 1.000000
39 0.999631 0.999723 1.000000 1.000462
0.999541 0.999541 0.999540 0.999540
38 0.999620 0.999715 1.000000 1.000474
0.999394 0.999393 0.999393 0.999392
37 0.999610 0.999707 1.000000 1.000488
0.999549 0.999549 0.999549 0.999548
36 0.999599 0.999699 1.000000 1.000501
1.000000 1.000000 1.000000 1.000000
Rectangular coordinates (+x, y) meters
0° *2° +4° *6°
68° 0.0 83632.8 167177.9 250548.0
445868.7 447222.2 451281.3 458041.7
67 0.0 87188.5 174287.0 261205.5
334374.6 335774.8 339974.0 346967.9
66 0.0 90743.7 181395.1 271862.0
222898.0 224344.1 228680.9 235904.0
65 0.0 94298.3 188502.3 282517.5
111439.6 112930.7 117402.4 124850.3
64 0.0 97852.4 195608.5 293172.1
0.0 1535.1 6139.0 13807.1
Scale factors (k, k)

68° 0.999657 0.999743 1.000000 1.000429
1.000000 1.000000 1.000000 1.000000
67 0.999627 0.999720 1.000000 1.000466
0.999533 0.999532 0.999531 0.999528
66 0.999596 0.999697 1.000000 1.000504
0.999394 0.999393 0.999391 0.999387
65 0.999564 0.999673 1.000000 1.000545
0.999557 0.999556 0.999555 0.999552
64 0.999530 0.999647 1.000000 1.000587
1.000000 1.000000 1.000000 1.000000

Note: A, is longitude of the central meridian of quadrangle, east being positive.
\ iz longitude.
h is 3cale factor along meridian.
k ix scale faclor along parallel.
Origin of reclangular coordinates occurs al minimum latitude and central meridian, y increasing northerly,
increasing easterly and taking the sign of (A—Ay).
Table applies to any quadrangle with the same latitude range.
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()\1) >\o )‘l 40°
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3g9°

38°

N. Lat.

37°

@b, 36°
-78° -77° -76° -75° -74° -73° -72°

(W.) Long.

FiGurk 26.—Typical IMW quadrangle graticule—modified Polyconic projection drawn to scale. Para-
llels are nonconcentric circular arcs; meridians are straight. Lines of true scale are shown heavy.
Standard projection for the International Map of the World Series (1:1,000,000-scale) until 1962

Table 20 provides samples of rectangular coordinates calculated for each degree
of typical mid-latitude and far-northern quadrangles. In addition, scale factors A
(along the meridian) and k (along the parallel) are shown for the same graticules.
The scale factors were calculated by comparing rectangular coordinates 0.01° of
latitude apart at constant longitude with the true distances, for /, and a similar
change in longitude at constant latitude, for k, rather than analytically. The linear
scale error is seen to change less than about 0.06 percent throughout the
quadrangle; the scale factor along any given parallel is almost constant, while a
given meridian varies up to 0.015 percent in scale. The table is based on the
International ellipsoid or spheroid, although the skeletal tables showing rectangular
coordinates of parallels ¢, and ¢, and published in earlier technical papers are
based on an ellipsoid with a semimajor axis of 6378.24 km and semiminor axis of
6356.56 km. Figure 26 illustrates a typical graticule.
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19. BONNE PROJECTION
SUMMARY

o Pseudoconical. Equal-area.

e Central meridian is a straight line. Other meridians are complex curves.

e Parallels are concentric circular arcs, but the poles are points.

e Scale is true along the central meridian and along all parallels.

» No distortion along the central meridian and along the standard parallel.

o Used for atlas maps of continents and for topographic mapping of some countries,

e Sinusoidal projection is equatorial limiting form of Bonne projection.

e Used considerably by Bonne in mid-18th century, but developed by others
during the early 16th century.

HISTORY

The name of Rigobert Bonne (1727-1795), a French geographer, is almost
universally applied to an equal-area projection which has been used for both
large- and small-scale mapping during the past 450 years. During the late 19th
and early 20th centuries, the most conspicuous use of the Bonne projection was
for maps of continents in atlases.

The Italian Bernardus Sylvanus’ world map of 1511 closely approaches the
Bonne projection, since its meridians are almost equally spaced along the equidis-
tant and concentric circular parallels. De I'Isle and Coronelli used the Bonne
principle for maps of about 1700. Bonne used the projection most notably for a
1752 maritime atlas of the coast of France (Reignier, 1957, p. 164). Continental
maps of Europe and Asia appeared on this projection by 1763, and the ellipsoidal
version replaced the Cassini projection for French topographic mapping begin-
ning in 1803.

For maps of continents, the Bonne was preceded by its polar limiting form, a
cordiform (heart-shaped) world map devised by Johannes Stabius and given wider
notice by Johannes Werner about 1514. The Werner projection, as it is usually
called, was used in the late 16th century for maps of Asia and Africa by Mercator
and Abraham Ortelius, but the “Bonne” projection has less distortion because its
projection center is at the center of the region being mapped instead of at the
pole. Eventually the Werner projection was made obsolete by the Bonne.

FEATURES AND USAGE

Like the Equidistant Conic with one standard parallel, the Bonne projection
(fig. 27) has concentric eircular arcs for parallels of latitude. They are equally
spaced on the spherical form and spaced in proportion to the true distance along a
meridian on the ellipsoidal form. The chosen standard parallel is given its true
curvature on the map by making the radius of its circular arc equal to the distance
between the parallel and the apex of a cone tangent at the parallel.

Unlike the parallels on the Equidistant Conic and other regular conic projections,
but like those on the Polyconie, each parallel is marked off for meridians at the
true spacings on either the spherical or ellipsoidal versions, beginning at the
straight central meridian. The individual meridians are then shown as complex
curves connecting these points. This results in an equal-area projection with true
scale along the central meridian and along each parallel, whether spherical or
ellipsoidal. The central meridian and the standard parallel are free of local angular
and shape distortion as well. The shape distortion increases away from either
line, and meridians do not intersect parallels at right angles elsewhere, as they do
on regular conic projections.
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F1euRE 27.—Bonne projection with central parallel at lat. 40° N. Called a pseudoconic projection, this
is equal-area and has no distortion along central meridian or central parallel. Popular in atlases
for maps of continents until mid-20th century.

The combination of curved meridians and concentric circular arcs for parallels
has led to the classification of “pseudoconic” for the Bonne projection and for the
polar limiting case, the Werner projection, on which the North Pole is the equiva-
lent of the standard parallel. The limiting case with the Equator as the standard
parallel is the Sinusoidal, a “pseudocylindrical” projection to be discussed later;
the formulas must be changed in this case since the parallels of latitude are
straight. Modifications to the Bonne projection, in some cases resulting in non-
equal-area projections, were presented by Nell of Germany in 1890 and by Solov'ev
of the Soviet Union in the 1940's (Maling, 1960, p. 295—296).

Many atlases of the 19th and early 20th centuries utilized the Bonne projection
to show North America, Europe, Asia, and Australia, while the Sinusoidal (as the
equatorial Bonne) was used for South America and Africa. The Lambert Azi-
muthal Equal-Area projection is now generally used by Rand McNally & Co. and
Hammond Inc. for maps of continents, while the National Geographic Society
prefers its own Chamberlin Trimetric projection for this purpose.

Large-scale use of the Bonne projection for topographic mapping, originally
introduced by France, is current chiefly in portions of France, Ireland, Morocco,
and some countries in the eastern Mediterranean area (Clifford J. Mugnier, writ-
ten commun., 1985).

FORMULAS FOR THE SPHERE
The principles stated above lead to the following forward formulas for rectangu-

lar coordinates of the spherical form of the Bonne projection, given R, ¢,, Ao, o,
and A, and using radians in equation (19—1),
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P = R (cot ¢, +db,—)

1941
E = R (\=)p) (cos d)ip 519—2;
x=psinE (19-3)
Yy=Rcotd, —pcos E (194)

where &, is the chosen standard parallel. The Y axis coincides with A, the central
meridian, y increasing north, and the X axis is perpendicular at ($,, Ay), x increas-
ing east. If (\—X,) exceeds the range +180°, 360° must be added or subtracted to
place it within range. If ¢, = 90°, the Werner projection results, but if ¢ is also 90°,
equation (19-2) is indeterminate, and x and y are both zero.

The inverse formulas for the sphere, given B, &, A9, &, and y, to find (b, \):

p = =[x®+ (R cot ¢, — y)*]'2, taking the sign of ¢, (19-5)
¢ =cot &) + ¢, - p/R (19-6)
N =Xo + p|arctan [x/(R cot &, — /(R cos b) 19-7

using the ¢ determined from (19-6). If & = +90°, (19—7) is indeterminate, but x
may be given any value, such as A,. When using the Fortran ATANZ function
for equation (19—7), and &, is negative, the signs of  and (R cot ¢,;—y) must
be reversed before insertion into the equation.

FORMULAS FOR THE ELLIPSOID

For the forward formulas, given a, e, ¢y, Ao, &, and A, to find x and y, the
following are calculated in order:

m = cos ¢/(1—e? sin® )2 (14—-15)
M = al(1—e*4—3e*/64—5¢"256—. . . ) b

—(3e%/8 + 3¢'/32 + 45¢%/1024 + . . .) sin 2¢

+(15€%/256 + 45¢"/1024 +. . . ) sin 4¢

—(356%3072+. . . )sin 6b+. . . ] (3-21
p =am/sin b, +M,-M (19-8)
E =am(A=\)p (19-9)
xr =psin £ (19-10)
y =am,/sin &,—p cos E (19-11)

where &, is the chosen central parallel, and m, and M, are found from (14-15)
and (3—-21), respectively, by using ¢, instead of ¢. Axes are the same as those
for the spherical form. If both ¢ and &, are at the same pole, equation (19-9)
is indeterminate, but r and y are both zero.

For the inverse formulas for the ellipsoid, given a, e, &,, Ay, * and y, to find
& and A, first w2, and M, are calculated as in the forward case from equations
(14-15) and (3—21) above. The following are then calculated in order:

p = =[x%+(am/sin &, —y)?]'?, taking the sign of ¢, (19-12)
M =am/sin b, +M,—p (19-13)
= Ma(l—e%4—3e"/64—565/256—. . . )] (7-19)
ey = [1=(1-eH12)[1 + (1—€?)'2] (3—24)
b = p+(3e,/2—-27,%32+. . .) sin 2u +(21¢,%16
—55¢,%/32+ .. .) sin 4u+(151¢,%96— . . .) sin 6u
+(1097¢,*/512—. . .) sin Bu +. . . (3-26)

From (14-15), m is calculated for ¢, then

A = Ao + plaretan[x/(am,/sin &, ~y))if(am) (19-14)
When using the Fortran ATAN2 function for equation (19—14), and ¢, is negative.
the signs of z and (am,/sin &, — y) must be reversed before insertion into the
equation. If & = +90°, (19—14)isindeterminate, but A may be given any value, such
as Aq.
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AZIMUTHAL AND RELATED MAP PROJECTIONS

A third very important group of map projections, some of which have been
known for 2,000 years, consists of five major azimuthal (or zenithal) projections
and various less-common forms. While cylindrical and conie projections are related
to cylinders and cones wrapped around the globe representing the Earth, the
azimuthal projections are formed onto a plane which is usually tangent to the
globe at either pole, the Equator, or any intermediate point. These variations are
called the polar, equatorial (or meridian or meridional), and oblique (or horizon)
aspects, respectively. Some azimuthals are true perspective projections; others
are not. Although perspective cylindrical and conic projections are much less used
than those which are not perspective, the perspective azimuthals are frequently
used and have valuable properties. Complications arise when the ellipsoid is
involved, but it is used only in special applications that are discussed below.

As stated earlier, azimuthal projections are characterized by the fact that the
direction, or azimuth, from the center of the projection to every other point on the
map is shown correctly. In addition, on the spherical forms, all great circles
passing through the center of the projection are shown as straight lines. Therefore,
the shortest route from this center Lo any other point is shown as a straight line.
This fact made some of these projections especially popular for maps as flight and
radio transmission became commonplace.

The five principal azimuthals are as follows:

1. Orthographic. A true perspective, in which the Earth is projected from an
infinite distance onto a plane. The map looks like a globe, thus stressing the
roundness of the Earth.

2. Stereographic. A true perspective in the spherical form, with the point of
perspective on the surface of the sphere at a point exactly opposite the point
of tangency for the plane, or opposite the center of the projection, even if the
plane is secant. This projection is conformal for sphere or ellipsoid, but the
ellipsoidal form is not truly perspective.

3. Gnomonic. A true perspective, with the Earth projected from the center onto
the tangent plane. All great circles, not merely those passing through the
center, are shown as straight lines on the spherical form.

4. Lambert Azimuthal Equal-Area. Not a true perspective. Areas are cor-
rect, and the overall scale variation is less than that found on the major
perspective azimuthals.

. Azimuthal Equidistant. Not a true perspective. Distances from the center
of the projection to any other point are shown correctly. Overall scale varia-
tion is moderate compared to the perspective azimuthals.

A sixth azimuthal projection of increasing interest in the space age is the general
Vertical Perspective (resembling the Orthographic), projecting the Earth from
any point in space, such as a satellite. onto a tangent or secant plant. It is used
primarily in derivations and pictorial representations.

As a group, the azimuthals have unique esthetic qualities while remaining
functional. There is a unity and roundness of the Earth on each (except perhaps
the Gnomonic) which is not as apparent on cylindrical and conic projections.

The simplest forms of the azimuthal projections are the polar aspects, in which
all meridians are shown as straight lines radiating at their true angles {rom the
center, while parallels of latitude are circles, concentric about the pole. The
difference is in the spacing of the parallels. Table 21 lists for the five principal
azimuthals the radius of every 10° of latitude on a sphere of radius 1.0 unit,
centered on the North Pole. Scale factors and maximum angular deformation are
also shown. The distortion is the same for the oblique and equatorial aspects at
the same angular distance from the center of the projection, except that k and k
are along and perpendicular to, respectively, radii from the center, not necessar-
ily along meridians or parallels.

<n
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TasLe 21.—Comparison of major azimuthal projections: Radius, scale factors, maximum angular
distortion for projection of sphere with radius 1.0, North Polar aspect

Lat. Orthographic
Radius h k m
90° 0.00000 1.00000 1.0 0.000°
80 .17365 .98481 1.0 877
70 .34202 .93969 1.0 3.563
60 .50000 .86603 1.0 8.234
50 64279 76604 1.0 15.23
40 .76604 64279 1.0 25.12
30 .86603 .50000 1.0 38.94
20 93969 .34202 1.0 58.72
10 .98481 .17365 1.0 89.51
18 1.00000 00000 1.0 180.0
-20 — - - -
-30 — - - -
- gg - (beyond limits of map) __ —
-60 - - - -
-70 _ — _— _— _—
-80 —_—— — _— _— —
~90 - - - -
Lat. Stereographic
Radius k*
90° ___ 0.00000 1.00000
80 ——— 17498 1.00765
70 .~ - 35263 1.03109
60 __________ .53590 1.07180
50 72794 1.13247
40 __. 93262 1.21744
30 ______ 1.15470 1.33333
20 1.40042 1.49029
10 1.67820 1.70409
[ —— 2.00000 2.00000
-10 2.38351 2.42028
-20 ——— 2.85630 3.03961
-30 _____ - 3.46410 4.00000
-40 __ - 4.28901 5.59891
-50 e 5.49495 8.54863
-60 e 7.46410 14,9282
-70 — . 11.3426 33.1634
-B0 22.8601 131.646
-90 @ @

There are two principal drawbacks to the azimuthals. First, they are more
difficult to construct than the cylindricals and the conics, except for the polar
aspects. This drawback was more applicable, however, in the days before comput-
ers and plotters, but it is still more difficult to prepare a map having complex
curves between plotted coordinates than it is to draw the entire graticule with
circles and straight lines. Nevertheless, an increased use of azimuthal projections
in atlases and for other published maps may be expected.

Secondly, most azimuthal maps do not have standard parallels or standard
meridians. Each map has only one standard point: the center (except for the
Stereographic, which may have a standard circle). Thus, the azimuthals are suit-
able for minimizing distortion in a somewhat circular region such as Antarctica,
but not for an area with predominant length in one direction.



TARLE 21.—Comparison of major azimuthal projections: Radius, scale factors, maximum angular
distortion for projection of sphere with radius 1.0, North Polar aspect—Continued

AZIMUTHAL AND RELATED MAP PROJECTIONS

Lat. Gnomonic
Radius h k w
90° 0.00000 1.00000 1.00000 0.000°
80 _ .17633 1.03109 1.01543 877
70 .36397 1.13247 1.06418 3.563
60 67735 1.33333 1.15470 8.234
50 .83910 1.70409 1.30541 15.23
40 1.19175 2.42028 1.55572 25.12
30 1.73205 4.00000 2.00000 38.94
20 2.74748 8.54863 2.92380 58.72
10 5.67128 33.1634 5.75877 89.51
0 @ @ @ .
-10 - - - —
-20 - — - _—
-30 - — - -
-40 (beyond limits of map) - -
-50 - — — —
- 60 — — — -
-70_ - — - -
- 80 - - - —
-90_ - - - -
L Lambert Azimuthal Equal-Area
at. Radius h k w
90° 0.00000 1.00000 1.00000 0.000°
80 17431 99619 1.00382 437
70 .34730 .98481 1.01543 1.754
60 51764 .96593 1.03528 3.972
50 .68404 93969 1.06418 7.123
40 84524 90631 1.10338 11.25
30 1.00000 86603 1.15470 16.43
20 1.14715 .81915 1.22077 22.71
10 1.28558 76604 1.30541 30.19
0 1.41421 70711 1.41421 38.94
~-10 1.53209 64279 1.565672 49.07
-20 1.63830 .57358 1.74345 60.65
-30 1.73205 .50000 2.00000 73.74
-40 1.81262 42262 2.36620 88.36
-50 1.87939 .84202 2.92380 104.5
-60 1.93185 .25882 3.86370 122.0
-70 1.96962 .17365 5.76877 140.6
-80 1.99239 08716 11.4737 160.1
-90 2.00000 .00000 o 180.0
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TabLE 21.—Comparison of major azimuthal projections: Radius, scale factors, maximum angular
distortion for projection of sphere with radius 1.0, North Polar aspect

Azimuthal Equidistant

Lat. Radius h k »
90° 0.00000 10 1.00000 0.000°
80 17453 10 100510 291
70 34907 10 1.02060 1168
60 52360 10 1.04720 2,642
50 69813 10 108610 4731
40 87266 10 113918 7.461
30 1.04720 10 120920 10,87
20 1.22173 10 130014 15.00
10 1.39626 10 141780  19.90

0 157080 10 157080 2566

-10 174533 10 177225 3235

-20 191986 10 204307  40.09

~30 2.09440 10 241840 4903

~40 2.26893 10 296188  59.36

50 2.44346 10 380135  71.39

~60 2.61799 10 523539 8557

210 2.79253 10 816480 1028

Z80 2.96706 10 17.086 1256

~90 3.14159 10 ® 180.0

Radiug = radius of circle showing given latitude.
w = maximum angular deformation.

= scale factor along meridian of Jongitude.

= scale factor along parallel of latitude.

* For Stereographic, & = kand w = 0.

E



20. ORTHOGRAPHIC PROJECTION

20. ORTHOGRAPHIC PROJECTION

SUMMARY

Azimuthal.

« All meridians and parallels are ellipses, circles, or straight lines.

» Neither conformal nor equal-area.

e Closely resembles a globe in appearance, since it is a perspective projection
from infinite distance.

Only one hemisphere can be shown at a time.

« Much distortion near the edge of the hemisphere shown.

No distortion at the center only.

Directions from the center are true.

Radial scale factor decreases as distance increases from the center.

Scale in the direction of the lines of latitude is true in the polar aspect.

o Used chiefly for pictorial views.

Used only in the spherical form.

Known by Egyptians and Greeks 2,000 years ago.

HISTORY

To the layman, the best known perspective azimuthal projection is the
Orthographic, although it is the least useful for measurements. While its distor-
tion in shape and area is quite severe near the edges, and only one hemisphere
may be shown on a single map, the eye is much more willing to forgive this
distortion than to forgive that of the Mercator projection because the Ortho-
graphic projection makes the map look very much like a globe appears, especially
in the oblique aspect.

The Egyptians were probably aware of the Orthographic projection, and
Hipparchus of Greece (2nd century B.C.) used the equatorial aspect for astronomi-
cal calculations. Its early name was “analemma,” a name also used by Ptolemy,
but it was replaced by “orthographic” in 1613 by Francois d'Aiguillon of Antwerp.
While it was also used by Indians and Arabs for astronomical purposes, it is not
known to have been used for world maps older than 16th-century works by
Albrecht Diirer (1471-1528), the German artist and cartographer, who prepared
polar and equatorial versions (Keuning, 1955, p. 6).

FEATURES

The point of perspective for the Orthographic projection is at an infinite distance,
so that the meridians and parallels are projected onto the tangent plane with
parallel projection lines. All meridians and parallels are shown as ellipses, circles,
or straight lines.

As on all polar azimuthal projections, the meridians of the polar Orthographic
projection appear as straight lines radiating from the pole at their true angles,
while the parallels of latitude are complete circles centered about the pole. On the
Orthographic, the parallels are spaced most widely near the pole, and the spacing
decreases to zero at the Equator, which is the circle marking the edge of the map
(figs. 28, 29A). As a result, the land shapes near the pole are prominent, while
lands near the Equator are compressed so that they can hardly be recognized. In
spite of the fact that the scale along the meridians varies from the correct value at
the pole to zero at the Equator, the scale along every parallel is true.

The equatorial aspect of the Orthographic projection has as its center some
point on the Earth’s Equator. Here, all the parallels of latitude including the
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FIGURE 28.—Geometric projection of the parallels of the polar Orthographic projection.

Equator are seen edge-on; thus, they appear as straight parallel lines (fig. 29B8).
The meridians, which are shaped like circles on the sphere, are projected onto the
map at various inclinations to the lines of perspective. The central meridian, seen
edge-on, is a straight line. The meridian 90° from the central meridian is shown as
a circle marking the limit of the equatorial aspect. This circle is equidistantly
marked with parallels of latitude. Other meridians are ellipses of eccentricities
ranging from zero (the bounding circle) to 1.0 (the central meridian).

The oblique Orthographic projection, with its center somewhere between the
Equator and a pole, gives the classic globelike appearance; and in fact an oblique
view, with its center near bul not on the Equator or pole, is often preferred to the
equatorial or polar aspect for pictorial purposes. On the oblique Orthographic, the
only straight line is the central meridian, if it is actually portrayed. All parallels of
latitude are ellipses with the same eccentricity (fig. 29C). Some of these ellipses
are shown completely and some only partially, while some cannot be shown at all.
All other meridians are also ellipses of varying eccentricities. No meridian appears
as a circle on the oblique aspect.

The intersection of any given meridian and parallel is shown on an Ortho-
graphic projection at the same distance from the central meridian, regardless of
whether the aspect is oblique, polar, or equatorial, provided the same central
meridian and the same scale are maintained. Scale and distortion, as on all azi-
muthal projections, change only with the distance from the center. The center of
projection has no distortion, but the outer regions are compressed, even though
the scale is true along all circles drawn about the center. (These circles are not
“standard” lines because the scale is true only in the direction followed by the
line.)

USAGE

The Orthographic projection seldom appears in atlases, except as a globe in
relief without meridians and parallels. When it does appear, it provides a striking
view. Richard Edes Harrison has used the Orthographic for several maps in an
atlas of the 1940’s partially based on this projection. Frank Debenham (1958) used
photographed relief globes extensively in The Global Atlas, and Rand McNally
has done likewise in their world atlases since 1960. The USGS has used it occasion-
ally as a frontispiece or end map (USGS, 1970; Thompson, 1979), but it also
provided a base for definitive maps of voyages of discovery across the North
Atlantic (USGS, 1970, p. 133).

It became especially popular during the Second World War when there was
stress on the global nature of the conflict. With some space flights of the 1960's,
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FiGURE 29.—Orthographic projection. (A) Polar aspect. (B) Equatorial aspect, approximately the view of the Moon,
Mars, and other outer planets as seen from the Earth. (C) Oblique aspeet, centered at lat. 40° N., giving the classic
globelike view.
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F16URE 30.—Geometric construction of polar, equatorial, and oblique Orthographic projections.

the first photographs of the Earth from space renewed consciousness of the
Orthographic concept.

GEOMETRIC CONSTRUCTION

The three aspects of the Orthographic projection may be graphically constructed
with an adaptation of the draftsman’s technique shown by Raisz (1962, p. 180).
Referring to figure 30, circle A is drawn for the polar aspect, with meridians
marked at true angles. Perpendiculars are dropped from the intersections of the
cuter circle with the meridians onto the horizontal meridian EE. This determines
the radii of the parallels of latitude, which may then be drawn about the center.

For the equatorial aspect, circle C is drawn with the same radius as A, circle B
is drawn like half of circle A, and the outer circle of C is equidistantly marked to
locate intersections of parallels with that circle. Parallels of latitude are drawn as
straight lines, with the Equator midway. Parallels are shown tilted merely for
use with oblique projection circle D. Points at intersections of parallels with other
meridians of B are then projected onto the corresponding parallels of latitude on
C', and the new points connected for the meridians of C. By tilting graticule C at
an angle ¢, equal to the central latitude of the desired oblique aspect, the corre-
sponding points of circles A and C may be projected vertically and horizontally,
respectively, onto circle D to provide intersections for meridians and parallels.

FORMULAS FOR THE SPHERE

To understand the mathematical concept of the Orthographic projection, it is
helpful to think in terms of polar coordinates p and 6:

p =Rsinc (20-1)
0 =w—Az=180°-Az (20-2)
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‘'where ¢ is the angular distance of the given point from the center of projection.
Az is the azimuth east of north, and 6 is the polar coordinate east of south. The
distance from the center of a point on an Orthographic map projection is thus
proportional to the sine of the angular distance from the center on the sphere.
Applying equations (5—3), (5—4), and (5—4a) for great circle distance ¢ and azi-
muth Az in terms of latitude and longitude, and equations for rectangular coordi-
nates in terms of polar coordinates, the equations for rectangular coordinates for
the oblique Orthographic projection reduce to the following, given R, &1. Ag, o,
and A (see p. 311 for numerical examples):

xr =R cos ¢ sin (A—Ay) (20-3)
y = R[cos ¢, sin b—sin &, cos dcos (A\—Np)]  (20—4)
h' =cosc

= sin ¢, sin ¢+ cos &, cos & cos (A\—Ay) (20-5)
k' =1.0

where ¢; and A are the latitude and longitude, respectively, of the center point
and origin of the projection, k' is the scale factor along a line radiating from the
center, and k' is the scale factor in a direction perpendicular to a line radiating
from the center. The Y axis coincides with the central meridian A, y increasing
northerly. All the parallels are ellipses of eccentricity cos ¢,. The limit of the map
is a circle of radius R.

For the north polar Orthographic, letting &, =90°, « is still found from (20-3),
but

y = —R cos & cos (A\—\) (20-6)

h =sin ¢ 20-7
In polar coordinates,

p =Rcosd (20-8)

0 =A—Aq (20-9)

For the south polar Orthographic, with ¢, = —90° x does not change, but

Yy =R cos & cos (A\—X\,) (20-10)
h = —sin ¢ (20—11)

For polar coordinates, p is found from (20—8), but
O=T—AN+XAg (20-12)

For the equatorial Orthographic, letting ¢, =0, x still does not change from
(20-3), but

y=R sin ¢ (20~-13)

In automatically computing a general set of coordinates for a complete Ortho-
graphic map, the distance ¢ from the center should be calculated for each intersec-
tion of latitude and longitude to determine whether it exceeds 90° and therefore
whether the point is beyond the range of the map. More directly, using equation
(6-3),

cos ¢ =sin ¢ sin ¢ +cos ¢, cos ¢ cos (A—X) 5-3)

if cos c is zero or positive, the point is to be plotted. If cos ¢ is negative, the point
is not to be plotted.
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For the inverse formulas for the sphere, to find ¢ and A, given R, &, Ao, 7,
and y:

& = arcsin [cos ¢ sin ¢, + (¥ sin ¢ cos ¢,/p)] (20—-14)

If p = 0, equations (20—14) through (20—17) are indeterminate, but & = ¢, and\ =
Ao If &, is not +90°,

A =\g+arctan [x sin ¢/(p cos &, cos ¢—y sin ¢, sin ¢)] (20—-15)
If &, is 90°,
A= \q+arctan [x/(—y)] (20-16)
If &, is —90°,
N = Ay +arctan (x/y) (20—-17)
Note that, while the ratio [x/(—y)] in (20—16) is numerically the same as (—x/y),
the necessary quadrant adjustment is different when using the Fortran ATAN2

function or its equivalent.
In equations (20— 14) and (20—15),

p = (aZ+ PN (20-18)
¢ = arcsin (p/R) (20—-19)

Simplification for inverse equations for the polar and equatorial aspects is obtained
by giving &, values of +90° and 0°, respectively. They are not given in detail here.

Tables 22 and 23 list rectangular coordinates for the equatorial and oblique
aspects, respectively, for a 10° graticule with a sphere of radius B =1.0. For the
oblique example &, =40°.



TABLE 22.—Orthographic projection: Rectangular coordinates for equatorial aspect

20. ORTHOGRAPHIC PROJECTION

Long. 0° 10° 20° 30° 40°
Lat. y z

90° ___ 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
80 ____ .9848 .0000 .0302 .0594 .0868 .1116
70 _ .9397 .0000 .0594 1170 1710 .2198
60 ____ .8660 .0000 .0868 1710 2500 3214
50 ____ 7660 .0000 1116 2198 3214 4132
40 ____ .6428 .0000 .1330 .2620 .3830 .4924
30 ____ .5000 .0000 1504 .2962 .4330 5567
20 ____ .3420 .0000 .1632 3214 .4698 .6040
10 ____ .1736 .0000 1710 .3368 4924 6330
0 ____ .0000 .0000 1736 .3420 .5000 .6428
Long. 50° 60° 70° 80° 90°

Lat. z

90° ___ 0.0000 0.0000 0.0000 0.0000 0.0000

80 ____ 1330 1504 .1632 1710 1736

70 ____ .2620 .2962 .3214 .3368 .3420

60 ____ .3830 .4330 .4698 .4924 .5000

50 ____ .4924 .5567 .6040 .6330 .6428

40 ____ .5868 .6634 7198 7544 7660

30 ____ .6634 7500 8138 .8529 8660

20 ____ 7198 8138 .8830 9254 .9397

10 ____ 1544 .8529 9254 .9698 .9848

0 ____ 7660 .8660 .9397 9848 1.0000

Radius of sphere = 1.0

Origin: (x, ) = 0 at (lat., long.) = 0. ¥ axis increases north. Other quadrants of hemisphere are symmetrical.
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TanLE 23.—Orthographic projection: Rectangular coordinates for oblique aspect centered at lat.
40° N.

{The circle bounding the hemisphere map has the same coordinales as the A=90° circle on Lhe cqualorial Orthagraphic projection.
The radius of the sphere=1.0. v coordinate in parentheses under x coordinate|

*\\\\\ffiff: 0° 10° 20° 30° 40°
Lat.

90° ____________ 0.0000 0.0000 0.0000 0.0000 0.0000
( .7660) ( .7660) ( .7660) ( .7660) ( .7660)

80 .0000 .0302 0594 .0868 1116
( .6428) ( .6445) ( .6495) ( .6577) ( .6689)

0 .0000 0594 1170 1710 2198
( .5000) ( .5033) ( .5133) ( .5295) ( .5514)

60 o ___ .0000 0868 1710 2500 3214
( .3420) ( .3469) ( .3614) ( .3851) ( .4172)

50 .0000 1116 198 3214 4132
( .1736) ( .1799) ( .1986) ( .2290) ( .2703)

40 o 0000 1330 2620 .3830 4924
( .0000) ( .0075) ( .0297) ( .0660) ( .1152)

30 .0000 11504 2962 4330 5567
(-.1736)  (-.1652)  (~.1401)  (-.0991) (-.0434)

20 o __ .0000 1632 3214 4698 6040
(~.3420) (-.3328) (-.3056) (-.2611)  (-.2007)

10 . .0000 1710 3368 4924 6330
(-.5000) (-.4904) (-.4618) (-.4152) (-.3519)

0 .0000 1736 3420 -5000 6428
(-.6428)  (-.6330) (-.6040) (-.5567) (-.4924)

10 .0000 1710 3368 4924 6330
(-.7660)  (-.7564) (-.7279) (-.6812) (-.6179)

- .0000 1632 3214 4698 16040
(-.8660) (-.8568) (-.8296) (.7851)  (-.7247)

80 ____________ 0000 1504 2962 4330 5567
(-.9397)  (-.9312) (-.9061) (-.8651)  (-.8095)

-40 -0000 1330 2620 .3830 4924

(-.9848) (-.9773) (-.9551) (-.9188) (- :8696)
-50 .0000 - - - —
(-1.0000) - — - _

Origin: (x, y) = 0at (lat., long.) = (40°, 0). Y axis increases north. Coordinates shown for central meridian (A = 0) and
meridians east of central meridian. For meridians wes( (negative), reverse signs of meridians and of r.

~\\\\Efff; 100° 110° 120° 130° 140°
Lat.

90° ______________ 0.0000 0.0000 0.0000 0.0000 0.0000

( .7660) ( .7660)  ( .7660) ( .7660)  ( .7660)
80 ____________ 1710 11632 1504 11330 1116

( 7738) ( .7926) ( .B102) ( .8262) ( .8399)
70 3368 3214 2962 2620 2198

( 7580) ( .7950) ( .8298) ( .8612) ( .B883)
60 . 4924 4698 4330 13830 3214

( 7192) ( .7733) ( .8241) ( .8700) ( .9096)
50 6330 6040 5567 4924 4132

( 6586) ( .72B1) ( .793d) ( .8524) ( .9033)
40 7544 7198 6634 5868 -

( 5779) ( .6608) ( .7386) ( .8089) -
30 8529 8138 . . =

( 4797) ( .5734) = - _
20 9254 _ = - =

( 3669) = - - -
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TaBLE 23.—Orthographic projection: Rectangular coordinates for oblique aspect centered at lat.
40° N.—Continued

\\\\\ffffi\ 50° 60° 70° 80° 90°
Lat.

90° ____________ 0.0000 0.0000 0.0000 0.0000 0.0000
( 7660) ( .7660)  ( .7660) ( .7660) ( .7660)
80 o ___ 11330 1504 1632 1710 1736
( 6827) ( .6986) ( .7162) ( .7350)  ( .7544)
70 2620 2962 3214 3368 3420
( 5785) ( 6099) ( .6447) ( .6817)  ( .7198)
60 o ___ 3830 4330 4698 4924 5000
( .4568) ( 5027) ( .5535) ( .6076) ( .6634)
50 e 4924 5567 16040 6330 6428
( 3212) ( .3802) ( .4455) ( 5151) ( .5868)
40 o ______ 5868 6634 7198 7544 7660
( 1759) ( .2462) ( .3240) ( .4069) ( .4924)
30 . 6634 7500 8138 8529 8660
( .0252) ( .1047) ( .1926) ( .2864) ( .3830)
20 o _____ 7198 8138 8830 9254 9397
(-.1263)  (-.0400) ( .0554) ( .1571) ( .2620)
0 7544 8529 9254 9698 9848
(-.2739)  (-.1835) (-.0835) ( .0231) ( .1330)
0 7660 8660 9397 9848 1.0000
(-.4182)  (-.3214) (-.2198) (-.1116)  ( .0000)
S0 7544 8529 9254 9698 -
(-.5399)  (-.4495)  (-.3495)  (-.2429) -
20 o ______ 7198 8138 8830 _ -
(- .6503)  (-.5640) (- .4686) _ _
30 6634 7500 - = =
0 (-.7408)  (-.6614) - - _

\\\\\Efff; 150° 160° 170° 180°
Lat,

90° 0.0000 0.0000 0.0000 0.0000
( .7660) ( .7660) ( .7660) ( .7660)
80 .0868 .0594 .0302 .0000
( .8511) ( .8593) ( .8643) ( .B660)
0 e 1710 1170 .0594 .0000
( .9102) ( .9264) ( .9364) (.9397)
60 ___ _________ .2500 1710 .0868 .0000
( 9417) ( .9654) ( .9799) ( .9848)
50 _ . 3214 2198 1116 .0000
( .9446) ( .9751) ( .9937) (1.0000)
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21. STEREOGRAPHIC PROJECTION

SUMMARY

Azimuthal.

Conformal.

The central meridian and a particular parallel (if shown) are straight lines.

All meridians on the polar aspect and the Equator on the equatorial aspect are
straight lines.

o All other meridians and parallels are shown as arcs of circles.

« A perspective projection for the sphere.

= Directions from the center of the projection are true (except on ellipsoidal

oblique and equatorial aspects).

= Scale increases away from the center of the projection.

» Point opposite the center of the projection cannot be plotted.

Used for polar maps and miscellaneous special maps.

Apparently invented by Hipparchus (2nd century B.C.).

HISTORY

The Stereographic projection was probably known in its polar form to the
Egyptians, while Hipparchus was apparently the first Greek to use it. He is
generally considered its inventor. Ptolemy referred to it as “Planisphaerum,” a
name used into the 16th century. The name “Stereographic” was assigned to it by
Francois d’Aiguillon in 1613. The polar Stereographic was exclusively used for
star maps until perhaps 1507, when the earliest-known use for a map of the world
was made by Walther Ludd (Gaultier Lud) of St. Dié, Lorraine.

The oblique aspect was used by Theon of Alexandria in the fourth century for
maps of the sky, but it was not proposed for geographical maps until Stabius and
Werner discussed it together with their cordiform (heart-shaped) projections in
the early 16th century. The earliest-known world maps were included in a 1583
atlas by Jacques de Vaulx (c. 1555—97). The two hemispheres were centered on
Paris and its opposite point, respectively.

The equatorial Stereographic originated with the Arabs, and was used by the
Arab astronomer Ibn-el-Zarkali (1029 -87) of Toledo for an astrolabe. It became a
basis for world maps in the early 16th century, with the earliest-known examples
by Jean Roze (or Rotz), a Norman, in 1542. After Rumold (the son of Gerardus)
Mercator's use of the equatorial Stereographic for the world maps of the atlas of
1595, it became very popular among carlographers (Keuning, 1955, p. 7-9;
Nordenskiold, 1889, p. 90, 92-93).

FEATURES

Like the Orthographic, the Stereographic projection is a true perspective in its
spherical form. It is the only known Lrue perspective projection of any kind that is
also conformal. Its point of projection is on the surface of the sphere at a point just
opposite the point of tangency of the plane or the center point of the projection
(fig. 31). Thus, if the North Pole is the center of the map, the projection is from
the South Pole. All of one hemisphere can be comfortably shown, but it is impossi-
ble Lo show both hemispheres in their entirety from one center. The point on the
sphere opposite the center of the map projects at an infinite distance in the plane
of the map.
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N. Pole Plane of projection
7 7 7 >

FIcURE 31.—Geometric projection of the polar Stereographic projection.

The polar aspect somewhat resembles other polar azimuthals, with straight
radiating meridians and concentric circles for parallels (fig. 324). The parallels
are spaced at increasingly wide distances, the farther the latitude is from the pole
(the Orthographic has the opposite feature).

In the equatorial and oblique aspects, the distinctive appearance of the Stereo-
graphic becomes more evident: All meridians and parallels, except for two, are
shown as circles, and the meridians intersect the parallels at right angles (figs.
32B, (). The central meridian is shown straight, as is the parallel of the same
numerical value, but opposite in sign to the central parallel. For example, if lat.
40° N. is the central parallel, then lat. 40° S. is shown as a straight line. For the
equatorial aspect with lat. 0° as the central parallel, the Equator, which is of
course also its own negative counterpart, is shown straight. (For the polar aspect,
this has no meaning since the opposite pole cannot be shown.) Circles for parallels
are centered along the central meridian; circles for meridians are centered along
the straight parallel. The meridian 90° from the central meridian on the equatorial
aspect is shown as a circle bounding the hemisphere. This circle is centered on the
projection center and is equidistantly marked for parallels of latitude.

As an azimuthal projection, directions from the center are shown correctly in
the spherical form. In the ellipsoidal form, only the polar aspect is truly azimuthal,
but it is not perspective, in order to retain conformality. The oblique and equato-
rial aspects of the ellipsoidal Stereographic, in order to be conformal, are neither
azimuthal nor perspective. As with other azimuthal projections, there is no distor-
tion at the center, which may be made the “standard point” true to scale in all
directions. Because of the conformality of the projection, a Stereographic map
may be given, instead of a “standard point,” a “standard circle” (or “standard
parallel” in the polar aspect) with an appropriate radius from the center, balanc-
ing the scale error throughout the map. (On the ellipsoidal oblique or equatorial
aspects, the lines of constant scale are not perfect circles.) This cannot be done
with non-conformal azimuthal projections. The Stereographic may also be modi-
fied to produce oval and irregular lines of true scale (see p. 203).

USAGE
The oblique aspect of the Stereographic projection has been recently used in

the spherical form by the USGS for circular maps of portions of the Moon, Mars,
and Mercury, generally centered on a basin. The USGS is currently using the

155



156 MAP PROJECTIONS—A WORKING MANUAL

FiGURE 32.—Stereographic projection. (A) Polar aspect; the most common scientific projection for polar
areas of Earth, Moon, and the planets, since it is conformal. (B) Equatorial aspect; often used in the 16th
and 17th centuries for maps of hemispheres. (C) Oblique aspect; centered on lat. 40° N, The Stereo-
graphic is the only geometric projection of the sphere which is conformal.
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spherical oblique aspect to prepare 1:10,000,000-scale maps of Hydrocarbon Prov-
inces for three continents after a least-squares analysis of over 100 points on each
continent to determine optimum parameters for a common conformal projection.
For Europe, the central scale factor is 0.976 at a central point of lat. 55°N. and
long. 20°E. For Africa, these parameters are 0.941, 5°N., and 20° E. For Asia, they
are 0.939, 45° N., and 105° E., respectively. *

The USGS has most often used the Stereographic in the polar aspect and
ellipsoidal form for maps of Antarctica. For 1:500,000 sketch maps, the standard
parallel is 71° S.; for its 1:250,000-scale series between 80° and the South Pole, the
standard parallel is 80°14° S. The Universal Transverse Mercator (UTM) grid
employs the UPS (Universal Polar Stereographic) projection from the North Pole
tolat. 84° N., and from the South Pole to lat. 80° S. For the UPS, the scale at each
pole is reduced to 0.994, resulting in a standard parallel of 81°06°52.3" N. or S.
The UPS central meridian (as defined for A\, on p. ix ) is the Greenwich meridian,
with false eastings and northings of 2,000,000 m at each pole.

In 1962, a United Nations conference changed the polar portion of the Interna-
tional Map of the World (at a scale of 1:1,000,000) from a modified Polyconic to the
polar Stereographic. This has consequently affected IMW sheets drawn by the
USGS. North of lat. 84° N. or south of lat. 80° S., it is used “with scale matching
that of the Modified Polyconic Projection or the Lambert Conformal Conic Projec-
tion at Latitudes 84° N. and 80° S.” (United Nations, 1963, p. 10). The reference
ellipsoid for all these polar Stereographic projections is the International of 1924,

The Astrogeology Center of the Geological Survey at Flagstaff, Ariz., has been
using the polar Stereographic for the mapping of polar areas of every planet and
satellite for which there is sufficient information in this region (see table 6).

The USGS is preparing a geologic map of the Arctic regions, using as a base an
American Geographical Society map of the Aretic at a scale of 1:5,000,000. Drawn
to the Stereographic projection, the map is based on a sphere having a radius
which gives it the same volume as the International ellipsoid, and lat. 71° N. is
made the standard parallel.

FORMULAS FOR THE SPHERE

Mathematically, a point at a given angular distance from the chosen center
point on the sphere is plotted on the Stereographic projection at a distance from
the center proportional to the trigonometrie tangent of half that angular distance,
and at its true azimuth, or, if the central scale factor is 1,

p=2R tan Y2 ¢ 21-1
0=n—Az=180°—Az (20-2)
k=sec® Vae (21-1a)

where c is the angular distance from the center, Az is the azimuth east of north
(see equations (5—3) through (5—4b)), and 0 is the polar coordinate east of south.
Combining with standard equations, the formulas for rectangular coordinates of
the oblique Stereographic projection are found to be as follows, given R, k,, &,,
Ao, &, and \ (see p. 312 for numerical examples):

x =Rk cos ¢ sin (A\—)\,) (21-2)

y = Rk [cos &, sin d—sin ¢, cos & cos (A—)y)] (21-3)
where

k = 2ky/[1+sin ¢, sin & +cos db; cos & cos (A=Ay)] (21-4)

and (dy, A) are the latitude and longitude of the center, which is also the origin.
Since this is a conformal projection, k is the scale factor in all directions, based on

——

“ These maps are no longer an active project.
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TABLE 24.—Stereographic projection: Rectangular coordinates for equatorial aspect (sphere)

(One hemisphere: v coordinate in parentheses under x coordinate]

Long. 0° 10° 20° 30° 40°
Lat.
90° . 0.00000  0.00000  0.00000  0.00000  0.00000
(2:00000)  (2.00000)  (2.00000)  (2:00000)  (2.00000)
BO 00000 05150 10212 .15095  .19703
(1:67820)  (1.68198) (1.69331) (1.71214)  (1.73837)
0 00000 (08885 17705 26386 34841
(1.40042)  (1.40586)  (1.42227)  (1.44992)  (1.48921)
60 oo 00000 11635 23269 34892 46477
(1:15470)  (1:16058)  (1.17839)  (1:20868)  (1.25237)
50 00000 13670 7412 41292 55371
(93262) ( .93819) ( .95515) ( .98421)  (1.02659)
40 00000 15164 30468 46053 62062
(72794) (7327T) ( 74749) ( 77285) ( 81016)
30 00000 (16233 32661 49487 66931
(53590) ( 53970) ( .55133) ( 57143) ( .60117)
20 00000 16950 34136 51808 70241
(35265) ( .35527) ( .36327) ( .37713) ( .39773)
0 00000 17363  .34987 53150  .72164
('17498) ( .17631)  ( .18037) ( .18744) ( .19796)
| 00000 (17498 35265  .53590 .72794
(100000)  ( .00000)  ( -00000) ( :00000)  ( .00000)

a central scale factor of &,, normally 1.0, but which may be reduced. The Y axis

coincides with the central meridian Aq, y increasing northerly and r, easterly.
If b= —d,, and A = A, % 1807, the point cannot be plotted. Geometrically, it is the

point from which projection takes place.
For the north polar Stereographic, with &, =90° these simplify to

x =2R k, tan (w/4—/2) sin (A—\,)
¥ = —2R k, tan (m/4—&/2) cos (A\—Ng)

k = 2ky/(1+sin ¢)

p = 2R k, tan (w/4—d/2)

8 =A-A\,

For the =south polar Stereographic with ¢, = -90°,

x =2R k, tan (m/4 + &/2) sin (A—\y)
Yy =2R k, tan (mw/4d + &/2) cos (A—\y)

k = 2ky/(1-sin ¢)

p =2R kq tan (n/4 + /2)

8=m—N+Ag

For the equatorial aspect, letting ¢, =0, « is found from (21-2), but

y=R ksind

k=2 kyll+cos & cos (A=Ay)]

(21-5)
(21-6)
21-7
(21-8)
(20-9)

(21-9)
(21-10)
(21-11)
21-12)
(20-12)

(21-13)
(21-14)

For the inverse formulas for the sphere, given R, ko, &y, ho, », and y:

& =aresin [cos ¢ sin &, + (¥ sin ¢ cos &,/p))

(20-14)
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TABLE 24.—Stereographic projection: Rectangular coordinates for equatorial aspect (sphere}—Con-

tinued
w 50° 60° 70° 80° 90°
Lat.
90° 0.00000  0.00000  0.00000  0.00000  0.00000
(2.00000)  (2.00000)  (2.00000) (2.00000)  (2.00000)
80 23933 27674 30806 33201 34730
(177184)  (1.81227) (1.85920) (1.91196)  (1.96962)
20 e 142957 50588 57547 63588 68404
(154067)  (1.60493) (1.68256)  (1.77402)  (1.87939)
60 o ___ 57972 169282 80246 90613 1.00000
(131078)  (1.38564) (1.47911) (1.59368)  (1.73205)
50 o 169688 ‘84255 99033  1.13892  1.28558
(1.08415)  (1.15945) (1.25597) (1.37825) (1.53209)
40 78641 95937  1.14080 133167  1.53209
( 86141) ( .92954) (1.01868) (1.13464)  (1.28558)
30 85235  1.04675 125567 148275  1.73205
( '64240) ( .69783) ( .77149) ( .86928)  (1.00000)
20 89755 110732  1.33650 159119  1.87939
( 42645) ( .46538) ( .51767) ( .58808)  ( .6840d)
10 oo 92304 114295 138450  1.65643 196962
(21267) ( .23271) ( .25979) ( .2965B) ( .34730)
0 93262 1.15470 140042 167820  2.00000
( 100000) ( .00000) ( .00000) { .00000) ( .00000)

Radius of sphere = 1.0.
Origin: (#, ¥)=0 at (lat., Jong.)=0. Y axis increases north. Other quadrants of hemisphere are symmetrical.

If p=0, equations (20— 14) through (20—17) are indeterminate, but é=¢, and
A=A,
If &, is not £90°:

A =\g+arctan [x sin ¢/(p cos ¢, cos ¢~y sin &, sin ¢)) (20—-15)
If &, is 90°:
A =N\q +arctan [x/(— )] (20-16)
If ¢, is —90°:
A=A +arctan (x/y) (20-17)

In equations (20— 14) and (20-15),

p=(x’+y%)? (20—-18)
¢ = 2 arctan [p/(2Rk,)| (21-15)

The similarity of formulas for Orthographic, Stereographic, and other azimuth-
als may be noted. The equations for k' (k for the Stereographic, k' =1.0 for the
Orthographic) and the inverse c are the only differences in forward or inverse
formulas for the sphere. The formulas are repeated for convenience, unless shown
only a few lines earlier.

Table 24 lists rectangular coordinates for the equatorial aspect for a 10° grati-
cule with a sphere of radius R =1.0.

Following are equations for the centers and radii of the circles representing the
meridians and parallels of the oblique Stereographic in the spherical form:
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Circles for meridians:

Centers: X = —2R ky/[cos b; tan (A\—\p)] (21-16)
y=—2R k, tan ¢, 21-17)
Radii: p = 2R ky/[cos ¢, sin (A—Xg)] (21-18)
Circles for parallels of latitude:
Centers: x=0
y = 2R ki, cos &,/(sin ¢, +sin $) (21-19)
Radii: p =2R k, cos d/(sin &b, +sin ¢) (21-20)

Reduction to the polar and equatorial aspects may be made by letting &, = +90° or
0°, respectively.

To use a “standard circle” for the spherical Stereographic projection, such that
the scale error is a minimum (based on least squares) over the apparent area of
the map, the circle has an angular distance ¢ from the center, where

¢ =2 arccos (1/%)'® (21-21)
¥ = tan® (B/2)/(—In cos® (B/2) ) (21-22)

and B is the great circle distance of the circular limit of the region being mapped
stereographically. The calculation is only slightly different if minimum error is
based on the true area of the map:

k= —In cos® (B/2)/sin? (B/2) (21-23)
In either case, ¢ of the standard circle is approximately B/\/ 2.
FORMULAS FOR THE ELLIPSOID

As noted above, the ellipsoidal forms of the Stereographic projection are
nonperspective, in order to preserve conformality. The oblique and equatorial
aspects are also slightly nonazimuthal for the same reason. The formulas result
from replacing geodetic latitude & in the spherical equations with conformal lati-
tude x (see equation (3—1)), followed by a small adjustment to the scale at the
center of projection (Thomas, 1952, p. 1415, 128—-139). The general forward
formulas for Lhe oblique aspect are as follows; given a, e, kg, ®,, Ao, &, and A (see
p. 313 for numerical examples):

x=A cos x sin (A=) (21-24)
¥ =A |cos x; sin x—sin x; cos x cos (A—A)] (21-25)
k = A cos x/(am) (21-26)

where

A =2 a komJicos x; [1+sin x; sin x

+¢os x, cos x ¢os (A=Al (21-27)
x = 2 arctan itan (/4 + &/2)[(1—e sin &)1 +e sin d)}2!
-n/2 B3-1

1+sin ¢\/1—e sin d\, |12
or = 2 arctan - /2 (3-1a)
1-sin ¢, +e sin ¢

m = cos &/(1—¢€? sin? o)1z (14-15)
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and x, and m, are x and m, respectively, calculated using ¢,, the central latitude,
in place of ¢, while k, is the scale factor at the center (normally 1.0). The origin of
x and y coordinates occurs at the center (¢, Ay), the Y axis coinciding with the
central meridian A, and y increasing northerly and x, easterly. The scale factor is
actually k, along a near-circle passing through the origin, except for polar and
equatorial aspects, where it occurs only at the central point. The radius of this
near-circle is almost 0.4° at midlatitudes, and its center is along the central meridian,
approaching the Equator from ¢;. The scale factor at the center of the circle is
within 0.00001 less than k.

In the equatorial aspect, with the substitution of ¢, = 0 (therefore x, = 0), ris
still found from (21 —-24) and & from (21-26), but

y=Asin x (21-28)
A =2aky/[1 + cos x cos (A—N\g)] (21-29)

Forthe north polar aspect, substitution of ¢, = 90°(therefore x, = 90°)into equa-
tions (21-27) and (14-15) leads to an indeterminate A. To avoid this problem,
the polar equations may take the form

x = psin (A—X,) (21-30)
y=—pcos (A=A (21-31)
k= pl/la m) (21-32)
where
p= 2 ﬂk(] t/[(] +e)|l+ew (1_(;)(] —n]w (21_33)
t = tan(m/4—d/2)/[(1-esind)/(1 + esind) ]2 (15-9)

(l—sin(p ) 1+esind \v 12

. - —_— Q.
or 1+sin & ( 1—e sin & ) (15-9a)
Equation (21-33) applies only if true scale or known scale factor &, is to occur at
the pole. For true scale along the circle representing latitude &,,

p = amgtt, (21-34)
Then the scale at the pole is
kp = (1/2) me [(1+e)0+n (1-e)a-0]12(q t,.) (21-35)

In equations (21-34) and (21-35), m, and t, are found from equations (14—15)
and (15-9), respectively, substituting ¢, in place of ¢.

For the south polar aspect, the equations for the north polar aspect may be
used, but the signs of &, ¥, d., ¢, A, and A, must be reversed to be used in the
equations.

For the inverse formulas for the ellipsoid, the oblique and equatorial aspects
(where ¢, is not +90°) may be solved as follows, given a, ¢, k,, $), Ao, v, and y:

& =2 arctan {tan (/4 + x/2)[(1 + e sin $)/(1—e sin b))
- /2 3-4)

N = Agtaretan [x sin ¢ /(p cos x; cos c,—y sin x, sin ¢,)] (21-36)

where

X = aresin [cos ¢, sin x; + (y sin ¢, cos x,/p)] (21-37

161
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butif p=0, x=x; and A=X\,.

p= @+ y*ne (20-18)
¢ = 2 arctan [p cos x,1/(2 a ko m,)) (21-38)

and m, is found from equation (14—15) above, using ¢, in place of ¢. Equation
(3—4) involves iteration, using x as the first trial ¢ in the right-hand side, solving
for a new trial ¢ on the left side, substituting into the right side, ete., until ¢
changes by less than a preset convergence (such as 10-9 radians). Conformal lati-
tude x, is found from (3—1), using &, for ¢. The factor c, is not the true angular
distance, as it is in the spherical case, but it is a convenient expression similar in
nature to ¢, used to find ¢ and .
To avoid the iteration of (3—4), this series may be used instead:

b = x + (%2 + 5¢'/24 + %12 + 1365360 + . .. ) sin 2y
+ (Te'48 + 29¢/240 + 811711520 + .. .)
sin 4y + (76%120 + 81e%1120 + .. .)
sin 6y + (4279¢"161280 + . .. )sin 8y + . .. (3-5)

For improved computational efficiency using this series, see p. 19.
The inverse equations for the north polar ellipsoidal Stereographic are as fol-
lows; given a, e, &, ko (if b, = 90°), Ay, x, and y:

& = 7/2—2 arctan [t[(1—e sin &)/(1 +e sin )] (7-9)
=\, + arctan [x/(—y)] (20—-16)

Equation (7-9) for ¢ also involves iteration. For the first trial, (n/2—2 arctan t)
is substituted for ¢ in the right side, and the procedure for solving equation (3—4)
just above is followed:

If &, (the latitude of true scale) is 90°,

t = pl(1+e)1-0 (1—e)i-112/(2a k) (21-39)

If &, is not 90°,
t = ptfa m) (21-40)

In either case,
p = (24 y*n2 (20-18)

and t. and m,. are found from equations (15—9) and (14-15), respectively, listed
with the forward equations, using ¢, in place of &. Scale factor k is found from
equation (21-26) or (21-32) above, for the ¢ found from equation (3—4), (3-5),
or (7—9), depending on the aspect.

To avoid iteration, series (3—5) above may be used in place of (7—9), where

x = m/2-2 arctan t (7~-13)

Inverse equations for the south polar aspect are the same as those for the north
polar aspect, but the signs of x, y, A, ¢, ¢, and A must be reversed.

Polar coordinates for the ellipsoidal form of the polar Stereographic are given in
table 25, using the International ellipsoid and a central scale factor of 1.0.

To convert coordinates measured on an existing Stereographic map (or other
azimuthal map projection), the user may choose any meridian for A, on the polar
aspect, but only the original meridian and parallel may be used for \, and ¢,, re-
spectively, on other aspects.
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TabLE 25.—Ellipsoidal polar Stereographic projection: Polar coordinates

[1nternational ellipsaid; central scale factor =1.0)

Latitude Radius, meters k, scale factor
90° 0.0 1.000000
89 111,702.7 1.000076
88 223 421.7 1.000306
87 335 173.4 1.000686
88 446.974.1 1.001219
85 558,840.1 1.001906
84 670,788.1 1.002746
83 782, 834 3 1.003741
82 894,995.4 1.004889
81 1,007,287.9 1.006193
80 1,119,728.7 1.007653
79 1, 232 334.4 1.009270
78 1, 345 122.0 1.0110456
77 1, 458 108.4 1.012979
76 1,571,310.9 1.015073
75 1 684 746.8 1.017328
74 1,798,433.4 1.019746
73 1, 912 388.4 1.022329
72 2, 026 629.5 1.025077
71 2,141,174.8 1.027993
70 2, 256 042 3 1.031078
69 2,371, 250 5 1.034335
68 2 486,818.0 1.037765
67 2,602,763.6 1.041370
66 2,719,106.4 1.045154
65 2,835,865.8 1.049117
64 2,953,061.4 1.053264
63 3,070.713.2 1.057596
62 3,188,841 .4 1.062115
61 3,307,466.7 1.066826
60 3,426, 609 9 1.071732
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22, GNOMONIC PROJECTION

SUMMARY

+ Azimuthal and perspective.

o All meridians and the Equator are straight lines.

o All parallels except the Equator and poles are ellipses, parabolas, or
hyperbolas.

e Neither conformal nor equal-area.

All great circles are shown as straight lines.

Less than one hemisphere may be shown around a given center.

No distortion at the center only.

Distortion and scale rapidly increase away from the center.

Directions from the center are true.

Used only in the spherical form.

e Known by Greeks 2,000 years ago.

HISTORY

The Gnomonic is the perspective projection of the globe from the center onto a
plane tangent to the surface. It was used by Thales (6367 -546?B.C.) of Miletus
for star maps. Called “horologium” (sundial or clock) in early times, it was given
the name “gnomonic” in the 19th century. It has also been called the Gnomic and
the Central projection. The name Gnomonic is derived from the fact that the
meridians radiate from the pole (or are spaced, on the equatorial aspect) just as
the corresponding hour markings on a sundial for the same central latitude. The
gnomon of the sundial is the elevated straightedge pointed toward the pole and
casting its shadow on the various hour markings as the sun moves across the sky.

FEATURES AND USAGE

The outstanding (and only useful) feature of the Gnomonic projection results
from the fact that each great-circle arc, the shortest distance between any two
points on the surface of a sphere, lies in a plane passing through the center of
the globe. Therefore, all great-circle arcs project as straight lines on this projec-
tion. The scale is badly distorted along such a plotted great circle, but the route
is precise for the sphere.

Because the projection is from the center of the globe (fig. 33), it is impossible
to show even a full hemisphere with the Gnomonic. Thus, if either pole is the
point of tangency and center (the polar aspect), the Equator cannot be shown.
Except at the center, the distortion of shape, area, and scale on the Gnomonic
projection is so great that it has seldom been used for atlas maps. Historical
exceptions are several sets of star maps from the late 18th century and terrestrial
maps of 1803. These maps were plotted with the sphere projected onto the six
faces of a tangent cube. The globe has also been projected from the mid-16th to

N. Pole Piane of projection

Equator

FIGURE 33.—Geometric projection of the parallels of the polar Gnomonic projection.
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the mid-20th centuries, using the Gnomonic projection as well as others, onto the
faces of other polyhedra. Generally, the projection is used for plotting great-
circle paths, although the USGS has not used the projection for published maps.

The meridians of the polar Gnomonic projection appear straight, as on other
polar azimuthal projections, and parallels of latitude are circles centered about the
pole (fig. 34A4). The parallels are closest near the pole, and their spacings increase
away from the pole much more rapidly than they do on the polar Stereographic.
The radii are proportional to the trigonometric tangent of the arc distance from
the pole.

On the equatorial aspect, meridians are straight parallel lines perpendicular to
the Equator, which is also straight (fig. 34B). The meridians are closest near the
central meridian, and the spacing is rapidly increased away from it, the distance
from center in proportion to the tangent of the difference in longitude. The
parallels other than the Equator are all hyperbolic arcs, symmetrical about the
Equator.

Since meridians are great-circle paths, they are also plotted straight on the
oblique aspect of the Gnomonic, but they intersect at the pole (fig. 34C). They
are not spaced at equal angles. The Equator is a straight line perpendicular to the
central meridian. If the central latitude is north of the Equator, its colatitude (90°
minus the latitude) is shown as a parabolic arc, more northern latitudes are
ellipses, and more southern latitudes are hyperbolas. If the central latitude is
south of the Equator, opposite signs apply.

Various graphical constructions have been published, but they are not de-
scribed here because of the ease of plotting or calculating coordinates by com-
puter, and because they do not add significantly to the understanding of this
projection.

FORMULAS FOR THL SPHERL

A point at a given angular distance from the chosen center point on the sphere
is plotted on the Gnomonic projection at a distance from the center proportional
to the trigonometric tangent of that angular distance, and at its true azimuth, or

p =Rtanc (22-1)
9 =m— Az = 180° - Az (20-2)
h' =1/cos® ¢ (22-2)
k' = 1/cos ¢ (22-3)

where ¢ is the angular distance of the given point from the center of projection.
Az is the azimuth east of north, and 0 is the polar coordinate east of south. The
term k' is the scale factor in a direction perpendicular to the radius from the cen-
ter of the map, not along the parallel except on the polar aspect. The scale factor
" is measured in the direction of the radius. Combining with standard equations,
the formulas for rectangular coordinates of the oblique Gnomonic projection are
as follows, given K. ¢, No, &, and A, to find x and y (see p.319 for numerical
examples):

T =Rk’ cos & sin (A—1y) 22—-4)
¥ = Rk’ [cos &, sin d—sin b cos &b cos (A —Ay)] (22-5)

where k' is found from (22-3) above,
cos ¢ = sin ¢; sin ¢ + cos &, cos & cos (A—\y) 5-3)

and (¢, o) are latitude and longitude of the projection center and origin. The Y
axis coincides with the central meridian Ay, y increasing northerly. The meridians
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FIGURE 34.—Gnomonic projection. range 60° from center. (A) Polar aspect. (B) Equatorial aspect. (C)

Oblique aspect, centered at lat. 40° N. All great-circle paths are atraight lines on these maps.
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are straight lines, but the parallels are conic sections for which the eccentricity =
(cos ¢y/sin ). (If the eccentricity is zero, for &, = * 90°, they are circles. If the
eccentricity is less than 1, they are ellipses; if equal to 1, a parabola; if greater
than 1, a hyperbolic arc.)

For the north polar Gnomonic, letting &; = 90°,

r =R cot b sin (A\—=\y) (22-6)

y =—R cot & cos (A\—=\p) 22-17)
In polar coordinates,

p =Rcotd (22—8)

8 =N-— X (22-9)

For the south polar Gnomonic, with ¢, = —90°,

r = -—R cot & sin (A—\qy) (22-10)

y =R cot ¢ cos (A\—A) (22—-11)
In polar coordinates,

p =—-Rcotod (22-12)

8 =m— A+ X (22—-13)

For the equatorial Gnomonic, letting ¢, = 0,

r =R tan (A\—=\,) (22-14)
¥ =R tan d¢/cos (A=A, (22—-15)

In automatically computing a general set of coordinates for a Gnomonic map,
equation (5—3) above should be used to reject points equal to or greater than
90° from the center. That is, if cos ¢ is zero or negative, the point is to be rejected.
If cos c is positive, it may or may not be plotted depending on the desired limits
of the map.

Forthe inverse fornmulas for the sphere, to find d and A, given R, &,, A, , and y:

& = aresin {cos ¢ sin ¢; + (y sin ¢ cos ¢,/p)] (20-14)

If p=0, equations (20—14) through (20—17) are indeterminate, but ¢ =d,, and
A=Aq. If &, is not = 90°,

N = XAy + arctan [ sin ¢/(p cos b, cos ¢ — y sin ¢, sin ¢)]  (20—-15)

If &, is 90°,

N = Ao + arctan [x/(—y)] (20—-16)
If &, is —90°,
A = Aq + arctan (x/y) (20—-17)
In equations (20-14) and (20— 15),
p =2+ yA) (20~18)
¢ =arctan (p/R) (22-16)

Table 26 lists rectangular coordinates for the equatorial aspect for a 10° graticule
with a sphere of radius R =1.0.

167



168

MAP PROJECTIONS—A WORKING MANUAL

TABLE 26.—Gnomonic projection: Rectangular coordinates for equatorial aspect

Long. 0° 10° 20° 30° 40° 50° 60° 70° 80°
+ 00000 0.1763 0.3640 0.5774 0.8391 1.1918 1.7321 2.7475 5.6713
Lal. v
80° 5.6713 5.7588 6.0353 6.5486 7.4033 8.8229 11.3426 16.5817 32.6596
70 2.7475 2,7899 2.9238 3.1725 3.5866 4.2743 5.4950 8.0331 15.8221
60 1.7321 1.7588 1.8432 2.0000 2.2610 2.6946 3.4641 5.0642 9.9745
50 1.1918 1.2101 1.2682 1.3761 1.5557 1.8540 2.3835 3.4845 6.8630
40 0.8391 0.8520 0.8930 0.9689 1.0954 1.3054 1.6782 2.4534 4.8322
30 BYNE] .5863 6144 .6667 0.7537 0.8982 1.1547 1.6881  3.3248
20 .3640 .3696  .3873 .4203 .4751 5662 0.7279  1.0642  2.0960
10 1763 .1790  .1876  .2036  .2302  .2743 3527  0.51556  1.0154
0 .0000  .0000  .0000 .0000 .0000  .0000 .0000 .0000  0.0000

Radius of sphere = 1.0.

Origin: (r. ) = 0 at (Jat., long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical. 90Lh
meridian or pole cannot be shown.
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23. GENERAL PERSPECTIVE PROJECTION

SUMMARY

o Often used to show the Earth or other planets and satellites as seen from space.

e Orthographic, Stereographic, and Gnomonic projections are special forms of

the Vertical Perspective.

« Vertical Perspective projections are azimuthal; Tilted Perspectives are not.

« Central meridian and a particular parallel (if shown) are straight lines.

o Other meridians and parallels are usually arcs of circles or ellipses, but some

may be parabolas or hyperbolas.

o Neither conformal (unless Stereographic) nor equal-area.

« If the point of perspective is above the sphere or ellipsoid, less than one hemi-
sphere may be shown, unless the view is from infinity (Orthographic). If
below center of globe or beyond the far surface, more than one hemisphere
may be shown.

No distortion at the center if a Vertical Perspective is projected onto a tangent
plane. Considerable distortion near the projection limit.

Directions from the center are true on the Vertical Perspective for the sphere
and for the polar ellipsoidal form.

Known by Greeks and Egyptians 2,000 years ago in limiting forms.

HISTORY AND USAGE

Whenever the Earth is photographed from space, the camera records the view
as a perspective projection. If the camera precisely faces the center of the Earth,
the projection is Vertical Perspective. Otherwise, a Tilted Perspective projection
is obtained. Perspective views have also served other purposes.

With the complication of plotting coordinates for general perspective projec-
tions, there was little known interest in them until the 18th century, except for
the well-known special cases of the Orthographic, Stereographic, and Gnomonie
projections, which are perspective from infinity, the opposite surface, and the
center of the sphere, respectively.

In 1701, the French mathematician Philippe De la Hire (1640—1718) found that
if the point of perspective is placed 1.71 times the radius of the globe from the
center in a direction opposite that of the plane of projection, the Equator on the
polar Vertical Perspective projection has exactly twice the radius of the 45th
parallel. The other parallels are not quite proportionally spaced, but this repre-
sented a use of geometric projection to achieve low distortion. Several other
scientists, such as Antoine Parent in 1702 and various mathematicians of the late
19th century, extended this approach to obtain low-distortion projections which
meet other criteria.

Of special interest was British geodesist A.R. Clarke’s use of least squares to
obtain in 1862 the Vertical Perspective projection with minimum error for the
portion of the Earth bounded by a given spherical circle. He determined parame-
ters for several continental areas, and he also presented the “Twilight” projection,
with a bounding circle 108° from the center and centered to show much of the land
mass of the Earth in one map. All these low- and minimum-error perspective
projections were based on “far-side” points of perspective, and they were pro-
Jected onto a secant plane to reduce overall error (Close and Clarke, 1911, p-
6565-656; Snyder, 1985a).

Space exploration beginning in 1957 led to a renewed interest in the perspective
projection, although Richard Edes Harrison had used several perspective views
in a World War 11 atlas of 1944. Now the concern was for the pictorial view from
space, not for minimal distortion. Albert L. Nowicki of the U.S. Army Map Serv-
ice presented the AMS Lunar Projection, which is a far-side Vertical Perspec-
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Point ot perspective
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Fi6eRE 35.—Geometric projection of the parallels of the polar Perspective projections, Vertical and
Tilted. Distance of point of perspective from center of Earth may be varied, as may the angle of
tilt. For “far-side” projection, “point of perspective” would be shown below Equator and usually
below South Pole on this drawing.

tive based on a perspective center about 1.54 times the radius from the center,
to show somewhat more than one hemisphere of the Moon. This recognized the
fact that more than half the Moon is seen from the Earth over a period of time.
Nowicki called this a “modified Stereographic” projection (Nowicki, 1962). This
name has been applied elsewhere to “far-side” Vertical Perspectives, none of
which are conformal; it is applied later in this book to complex-algebra modifica-
tions of the Stereographic which are conformal but not perspective.

The Tilted Perspective projection is more complicated to compute, but since it
has been the projection used in effect for most space photographs, such as those
from the manned Gemini and Apollo space missions, it has been analyzed in recent
literature.

Weather maps issued by the U.S. National Weather Service have regularly
been based on a Vertical Perspective projection as seen from geosynchronous
satellites near the Equatorial plane and 42,000 km from the Earth's center. The
USGS has not used the Perspective projection to date for published maps.

FENTURES

The general Perspective projection (excepting the three common forms) should
be considered primarily as a basis for a view of the Earth from space. The various
historical studies described above and leading to low-error azimuthal projections
have little practical value, since nonperspective azimuthal projections, like the
Azimuthal Equidistant, may be used instead.

It is therefore of little interest to compute distortion at various locations on the
map. There is no distortion at the center of projection with the Vertical Perspec-
tive onto a tangent plane (figs. 35 and 36), but there is shape, area, and scale
distortion almost everywhere else on perspective maps (except that the Stereo-
graphic is conformal). The rapidity with which distortion increases varies with the
location of the point of perspective and with the tilt of the plane to the line con-
necting this point with the center of the Earth (figs. 35 and 37). For the Vertical
Perspective, this plane is perpendicular to this line.
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FiGURE 36.—Vertical Perspective projection. (4) Polar aspect, from 2,000 km above the Earth’s surface. (B)
Equatorial aspect, from geosynchronous satellite, 35,800 km above the Earth’s surface. (C) Oblique
aspect, centered at lat. 40° N., from 2,000 km above the Earth's surface.
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—_

FFrivre 37.—Tilted Perspective projection. Eastern seaboard viewed from a point about 160 km
above Newburgh, N.Y. Parameters using symbols in text: &, = 417 30" N. fat., A, = 74° 00" W.
long., w = 55", vy = 2100, P = 1.025. 1° graticule.

While the equations listed below are generally suitable for “far-side” Perspec-
tive projections (from below the surface), using negative distances to the points
of perspective, the features are described for “near-side” Perspectives. For many
perspective maps, one parallel of latitude is shown as a straight line (on the equa-
torial Orthographic aspect, all are straight). Its location is computed from formu-
las given below. The central meridian is also straight, as are all meridians on
vertical polar aspects. Parallels of latitude on vertical polar aspects are concen-
tric circles. Nearly all other meridians and parallels are elliptical arcs, except that
certain angles of tilt may cause some meridians and parallels to be shown as pa-
rabolas or hyperbolas.
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The horizon or limit of the map is outlined by one of the conic sections, depend-
ing on the angle of tilt and the location of the point of perspective. For the sphere,
if there is no tilt, the outline is a circle. It is an ellipse, parabola, or hyperbola if
the cosine of the tilt angle is greater than, equal to, or less than, respectively, the
radius of the sphere divided by the distance from its center to the point of
perspective.

For pictorial and small-scale usage, the spherical equations are adequate. For
special large-scale applications, such as Landsat returned-beam-vidicon (RBV)
and Space Shuttle Large-Format-Camera images and photographs, the ellipsoidal
equations are necessary. The formulas are given below for several possible
alternatives.

FORMULAS FOR TIHE SPHERE

VERTICAL PERSPECTIVE PROECTION

A point at a given angular distance ¢ from the center, and at an azimuth Az east
of north is plotted in accordance with the following polar coordinates (8 is meas-
ured east of south):

p =R(P-1)sin ¢/(P—cos ¢) (23-1)
8 =m - Az = 180° — Az (20—-2)
h' =(P—-1) (P cos c—DIP—cos c)? (23-2)
k' =(P-D/(P—cos ¢) (23-3)

P is the distance of the point of perspective from the center of the Earth, divided
by the radius R of the Earth as a sphere. It is positive in the direction of the cen-
ter of the projection (for the “view from space”) and negative in the opposite direc-
tion (for a far-side perspective such as those by Clarke and Nowicki (above). or
the Stereographic, for which P = —1). In terms of the height H of the point of
perspective above the surface, P = H/R + 1,or H = R(P—1). The term k' is the
scale factor in a direction perpendicular to the radius from the center of the map,
not along the parallel, except in the polar aspect. The scale factor h’ is measured
in the direction of the radius.

Combining with standard equations, the formulas for rectangular coordinates
of the oblique Vertical Perspective projection are as follows, given R, P, &, Ay, &,
and A, to find x and y (see p. 320 for numerical examples):

xr =Rk cos ¢ sin (A=A (22—-4)
y =R k' [cos &, sin & — sin ¢, cos ¢ cos (A—X\g)] (22—-5)

where k' is found from (23-3) above,

cos ¢ = sin ¢, sin & + cos &, cos & cos (A—X\g) (5-3)

and (b, Ag) are latitude and longitude of the projection center and origin. The Y
axis coincides with the central meridian A, ¥ increasing northerly. The map limit
is a circle of radius R[(P —1)/(P + 1)]'2. Meridians and parallels are generally ellipti-
cal arcs, but the central meridian and the latitude whose sine equals P sin ¢, are
straight lines. For automatic plotting, equation (5—3) should be used to reject
points for which cos ¢ is less than 1/P. These are beyond the range of the map,
regardless of whether P is positive or negative.

Because of the number of other equations below, the simplified equations for
polar and equatorial aspects are not given here. They may be obtained by enter-
ing the appropriate values of ¢, in equations (22-4), (22—5), and (5—3). Table 27
shows rectangular coordinates for a hemisphere as seen from a geosynchronous
satellite.
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TABLE 27.—Vertical Perspective projection: Rectangular coordinates
Jor equatorial aspect from geosynchronous satellite

{y coordinste in parentheses under r coordinate)

Long. 0° 10° 20° 30° 40° 50° 60° 70° 80°
Lat.
80° 0.0000 0.0263 0.0517 — — — — —_ —_

( .8586) ( .8582) ( .8572) — — — — — —
70 .0000 .0531 1044 0.1520 0.1943 0.2301 0.2581 — —

( .B412) ( .B405) ( .8385) ( .8351) ( .8306) ( .8251) ( .8189) — —
60 .0000 L0796 .1563 .2271 .2896 .3418 .3820 0.4094 —

( .7953) ( .7943) (.7914) ( .7867) ( .7804) (.7727) ( .7641) ( .7547) —
50 .0000 .1048 .2054 .2979 .3789 .4458 .4967 .5304 —

( .7203) (.7191) ( .7156) ( .7100) ( .7026) ( .6936) ( .6835) (.6727) —
40 .0000 1275 .2496 .3614 4587 .5382 .5978 .6363 —

( .6171) ( .6159) (.6123) ( .6065) ( .5988) ( .5895) ( .5792) ( .5682) —
30 .0000 . 1465 .2867 .4146 52562 .6149 6813 1232 —

( .4884) ( .4872) ( .4840) ( .4787) (.4717) ( .4634) ( .4542) ( .4444) —
20 .0000 .1610 3148 .4548 5753 .6725 .7436 7879 0.8055

( .3384) ( .3375) ( .3350) (.331D) ( .3258) ( .3195) ( .3125) ( .3052) (.2977)
10 .0000 1701 3324 4798 .6065 7082 7822 .8277 .8452

( .1732) (.1727 (.1714 ( .1692) ( .1664) ( .1630) ( .1593) ( .1553) ( .1513)
0 .0000 1732 .3384 .4884 .6171 .7203 7953 .8412 .8586

( .0000) ¢ .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000)

Radius of sphere

= 1.0. Radius of bounding circle = 0.8588. Puint of perspective is P = 6.62 radii from center (35,800 km above Earth’s surface). See (ig. 368.
Origin: (x, ¥) = Oat (Jat., long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical. Dashes indicate invisible graticule intersections. Poles
and 90th meridians are also invisible.
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For the inverse formulas for the Vertical Perspective projection of the sphere,
given R, P, &, Ao, &, and y, to find ¢ and X

& = arcsin [cos ¢ sin ¢, + (y sin ¢ cos &,/p)] (20—-14)

If p=0, equations (20—14) through (20-17) are indeterminate, but ¢é=¢, and
A= \p.

A = Ay + arctan [x sin ¢/(p cos &, cos c—y sin ¢, sin ¢)] (20—-15)

In equations (20—14) and (20-15),

p =%+ (20—18)
¢ =aresin [P—(1—p4P + DARHP—1)2)/
[(R(P-1)p+pH{R(P-1))]| (23-4)

In (23—4), if P is negative and p is greater than R(P—1)/P, ¢ must be subtracted
from 180° to place it in the proper quadrant.

TILTED PERSPECTIVE PROJECTION

The following equations are used in conjunction with the equations above for
the Vertical Perspective. While they may be combined, it is easier to follow and
more practical to program separately these equations to follow (for forward) or
precede (for inverse) those above. For the forward equations, given B, P, &,, Xy,
w, vy, &, and X, (x,y) is first calculated from equations (5—3), (23—3), (22—4), and
(22—-5) in order, then

r¢ =(r cos y — y sin y) cos w/A (23-5)

Yy =(y cos y + xsin yVA (23-6)
where

A =|(y cos y + x sin y) sin o/Hl + cos w 23—-7

H =R®P-1) (23-8)

vy is the azimuth east of north of the Y axis, the most upward-tilted axis of the
plane of projection relative to the tangent plane, and w is the upward angle of tilt,
or the angle between the Y, axis and the tangent plane. The X/ axis lies at the
intersection of the tangent and tilted planes. The rectangular coordinates (., y;)
lie in the tilted plane, with the origin at (b, Ay) and the Y} axis oriented at azimuth
v rather than due north (see fig. 38).

Restated in terms of a camera in space, the camera is placed at a distance RP
from the center of the Earth, perpendicularly over point ($,, Ay). The camera is
horizontally turned to face v clockwise from north, and then tilted (90°-w) down-
ward from horizontal, “horizontal” meaning parallel to a plane tangent to the
sphere at (d,, Ag). The photograph is then taken, placing points (¢, \) in positions
(1, ¥¢), based on a scale reduction in K. The straight meridian and parallel of the
Vertical Perspective are also straight on the Tilted form.

If the tilted plane is perpendicular to the line connecting the point of perspec-
tive and the horizon, w = aresin (1/F). Points for which cos ¢ (equation (5—3)) is
less than (1/P) are beyond the map limits, as on the Vertical Perspective, but the
map limit is how a conic section of eccentricity equal to sin w/(1—1/P?'2, This limit
may be plotted by inserting the (x,y) coordinates of the circle representing the
Vertical Perspective map limit into equations (23—5) through (23—7) for final
plotting coordinates (x, y,), after stating the original equations for the circle in
parametric form,
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Y' axis

\ Vertical plane

X and X‘ axes

-~

Tilled plane

F1GURE 38.—Coordinate system for Tilted Perspective projection. The north (N) arrow lies in the
vertical plane for the equatorial or oblique aspect. See figure 35 for projection of points onto
these planes.

x =RIP-1DAP+1D)]" sin 9 (23-9)
y =RIP—1IP+1]2cos 0 (23-10)

in which 0 is given successive values from 0° to 360°.

For the inverse equations for the Tilted Perspective projection of the sphere,
given B, P, &, Ao, @, v. ¥y and y,, first H is calculated from (23 -8), and (x,y) are
calculated from these equations:

M = Hrx/(H-y, sin w) 23-11)
Q = Hy, cos w/(H—-y, sin w) (23-12)
r =Mcosy + Qsiny (23-13)
y =Qcosy— Msiny (23-14)

Then these values of (x.y) are inserted in equations (20— 14) through (20—18) and
(23—4) for inversing the Vertical Perspective, to obtain (¢, A).

It is also possible to use projective constants K,~K,, for the sphere as well as
the ellipsoid in equations below, but this is not often done for the sphere. If de-
sired, the formulas below may be used for the sphere if the eccentricity is made
zero.

FORMULAS FOR THE ELLIPSOID

VERTICAL PERSPECTIVE PROJECTION

Because of the increased number of equations, they are given in the order of
use. Given a, €, P, &;, Ao, ho, &, X, and h, to find xr and y (For numerical
examples see p. 323):
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N = a/(1—¢® sin® )2 (4-20)
N, = a/(1-¢& sin® ¢)'2 (8—23)
C =[(N+h)a] cos & (23-15)
S =[[N(1—¢€* + hlal sin ¢ (23-16)
& = &, — aresin [N,e? sin &, cos &,/(Pa)] (23-17)
l-i = Pa cos $,/cos by — N, —hy (23-18)
K = H/[P cos (b1—dy) — S sin ¢; — C cos ¢, cos (A—Ag)] (23-19)
x = KC sin (\—\g) (23—19a)
y = K[P sin (b,—d,) + S cos ¢, — C sin ¢ cos (A=) (23-20)

where P = the distance of the point of perspective from the center of the Earth,
divided by a, the semimajor axis.

H = the height of the point of perspective in a direction perpendicular to the
surface of the ellipsoid at nadir point (¢,, Ay), but measured from the height &, of
the nadir above the ellipsoid, not above sea level.

¢, = the geocentric latitude of the point of perspective, measured as the angle
between the direct line from the center to this point, and the equatorial plane, not
as the geocentric latitude corresponding to ¢,.

h = the height of (b, A) above the ellipsoid. The use of & makes these formulas
more general, but for most plotting of graticules it would be zero.

If H is given rather than P, the latter may be computed as follows:

P = (cos by/cos &) (H + N +hoVa (23-21)

Since d)g is calculated from P in equation (23— 17), iteration is involved, with ¢,
as the first trial value of b, The comments following the forward formulas for the
sphere apply approximately here. The straight parallel is the latitude ¢ whose
sine equals Pa sin <bg/[N(1—e2)+h], if I is a constant, such as zero. This is an
iterative calculation with successive substitution of ¢, starting with &, as a trial,
The central meridian \, is also straight.

For the inverse formulas for the Vertical Perspective projection of the ellip-
soid, given a, ¢?, P, &1, o, hy, 1, x, and y, to find &, A:

Equations (23—17) and (23— 18) are used to compute d)y and H (or (23-21) to
compute P if H is given), then

B =P cos (¢1—d>_,,) (23-22)
D =P sin (4,~b,) (23-23)
L =1-¢%cos? ¢, (23-24)
G =1-e?sin® ¢, (23-25)
J =2¢% sin &, cos &, (23-26)
w =—2BLH - 2DGy + BJy + DHJ (23-27)
v =LH? + Gy* — HJy + (1-é®n? (23-28)

If h is zero, E = 1 in the next equation (23—29). If  is not zero, use a first trial
E =1.

Then,
t =P?(1-¢"cos® &) — E (1-¢%) (23-29)
K =[— u + (u2-4te)?)2t (23-30)
X =al(B—HI/K') cos &, — (y/K’'—D) sin ¢,] (23-3D)
Y =ax/K' (23-32)
S =(y/K'-D) cos ¢, + (B—H/K’) sin &, (23-33)
N =M\g + arctan (Y/X) (23-34)

If k is not zero, ¢ may be initially estimated at aresin S to calculate a trial ¢ from
equation (23—35) and then E from (23-36). Equations (23—29) through (23—36)
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are iterated using the latest values of ¢, E, and / (based on the height above the
ellipsoid at the trial ¢, A) until ¢ changes by a negligible amount.

¢ = arcsin {S/[(1—e®)/(1—e? sin® $)'2 + h/al| (23-35)
E =[1/(1—¢€%sin® $)12 + hial? — % sin® & [1/(1—€? sin® &) — k(a2 —aZe®)] (23—36)

If k is zero, no iteration or previous estimate for ¢ is necessary, and ¢ may be
found as follows:

& = arctan [S/[(1—-¢?) (1-€*~S%))?| (23-37)
TILTED PERSPECTIVE PROJECTION USING “CAMERA” PARAMETERS

Given a, €%, P, &y, Ay, hg, ®, v, &, X, and A, to find 2, and y,, first (x, y) are
calculated from (23—15) through (23—20), then (x,, y,) from (23—5) through (23-7),
but (23—8) is not used. Definitions following each of these sets of formulas apply,
but the limits (horizons) of the map do not precisely follow the spherical formulas
given. The ellipsoidal form is unnecessarily complicated to extend to the map
limits in any case.

Forthe corresponding inverse formulas, givena, €2, P, &y, Ay, ho, 0, v, h, x,and
¥, to find & and A, first (x, y) are calculated using (23— 11) through (23—-14), then
(b, A) are calculated from (23—-17), (23—18), and (23-22) through (23—-37).

TILTED PERSPECTIVE PROJECTION USING PROJECTIVE EQUATIONS

When a photograph or other plane image is obtained from space, projective
equations with 11 constants may be used to find the rectangular coordinates of
any point of known latitude, longitude, and height above the ellipsoid, in the plane
of the image, instead of directly using the orientation of the camera or sensor. The
3-dimensional rectangular coordinates of a point on or off the Earth’s surface can
be found from the following equations, taking the semimajor axis a of the Earth
as 1.0:

X =Ccos A (23-38)
Y =Csin A (23—-39)
zZ =S8 (23—40)

where C and S are found from equations (23—15) and (23—16) respectively, the X
and Y axis lie in the Earth’s equatorial plane, with the X axis intersecting the
prime meridian (A = 0), and the Z axis coincides with the Earth’s polar axis. The
values of X, Y, and Z increase from the origin at the center of the Earth toward A =
0, A = 90°, and the North Pole, respectively, but they are dimensionless in the
above equations.

The projective equations are as follows,

¥, = (KX +KY +KaZ + KWK X+ KgY +K.Z +1) (23-41)
Yy, =KX+ KoY + K102 + K\ (KX + KgY + K7Z + 1) (23—-42)

where (x,', y,') are coordinates in the tilted plane, but relative to any pair of
perpendicular axes and any origin, rather than those of (x,, y,) as described
following (23-8). Constants in the denominators are dimensionless, but those in
the numerators are in the same units as (z,’, y,").

The 11 constants K, may be determined either from points on the “space
photograph” or from the parameters of the “camera.” Although least squares and
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other corrections are used in determining these constants in analytical photogram-
metry for highest precision, the approach given here is confined to the use of
measurements which are assumed to the precise. The reader is referred to other
texts for the least-squares approach.

To determine K,—K,, from six widely spaced identified points on the image,
equations (23—41) and (23—42) may be transposed as follows:

XK, + YK, + ZK, + K, — 2/ XKs—x/ YK;~2/ ZK,
+ 0Ky + 0Ky + OK,o + OK,, = &,/  (23-43)

0K, + 0K, + OK3 + 0K, — y/'XKo—y/ YKo~ y’ ZK,
+ XKy + YKy + ZKyy + Ky =y (23-44)

Using a separate pair of these two equations for each of the six points, and omitting
one of the twelve equations, the equations are suitable for solution as eleven
simultaneous equations with eleven unknowns (K;—K,,), using standard pro-
grams. A less satisfactory but usable procedure involving only seven simultaneous
equations is detailed in Snyder (1981c. p. 158).

To determine K, —K;, from parameters of the projection, first H is found from
(23-18), then

U = P[sin(d;~dg) cos y sin o + cos (db;—dy) cos w) (23—45)
F = (sin ¢, sin Ao cos ¥ — cos A, sin y)/ 7 (23—46)
1% = (sin ¢, sin A, sin y + cos A, cos v) cos w/{/ (23—-47)
M = (sin &, cos A, sin y — sin A, cos v) cos o/l (23—-48)
N = (sin ¢, cos A\ cos y + sin A, sin y)/[7 (23-49)
w = (—sin vy cos w cos 6§ — cos vy sin 8)/U7 (23—-50)
T = (—sin v cos w sin 0 + cos vy cos 8)/{/ (23-51)
K = —N sin w — ¢os &, cos A, cos w/U/ (23-52)
K = —F sin w — cos ¢, sin A, cos w/U/ (23—-53)
K, = (cos ¢ cos y sin @ — sin ¢, cos w)/U/ (23—-54)
K, = H(Mcos 0 + Nsin0) + K, (23-55)
K, = H(V cos 8 + F sin0) + Kur, (23-56)
K, = HW cos &, + Kqry (23-57)
K, = HWF sin (¢, —d,) + (23-58)
K = H (M sin 6—N cos 0) + Ky, (23-59)
K, = H (Vsin8—F cos 9) + Ky, (23-60)
K,y = HTcos ¢, + Koy, (23—61)
Kyy = HTP sin (d1—dg) + yo (23-62)

where, to review the meanings of previously defined symbols,

(dy, Ng) = latitude and longitude of the projection center and origin

b, = geocentric latitude of the point of perspective, found from equa-
tion (23-17)
¥y = azimuth east of north of the Y, axis, or the most upward-tilted

axis of the plane of projection

) = upward angle of tilt

P = distance from the center of the Earth to the point of perspective,
divided by a, the semimajor axis.

New symbols are as follows:

(] = clockwise angle through which the (X,, Y,) axes are rotated for
the arbitrary axes (X", Y/') used for the constants K, - K,,. This
may be made zero to retain the (X;, Y;) axes.
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(o, yo) = offsets of the (X;, Y;) axes to establish a different origin for the
(X¢', Y¢') axes. They may also be set at zero to retain the (X,
Y,) axes.

The two sets of axes are related as follows:

X' = xpcos B — y;sin® + x (23—-62a)

Yi' = yrcos B + xysin @ + yq (23—-62b)

For inverse computations using projective constants, given K,—K,,, =/, and
y', to find & and A, the following are calculated in order:

A, =x'K;—-K, (23-63)
A, =1/'K;—K, (23-64)
Ay =x'K;-K, (23-65)
Ay =Ki—x/ (23-66)
A; = y'K;—Kg (23-67)
A = y'Ke— Ky (23-68)
A: = y'K;-K,, (23-69)
Ay = Ky—y/ (23—-70)
Ay = AJAg—AA; (23-71)
A = AJA;—AA; (23-172)
Ay = AvAs-A4, (23-73)
A = AA;-AzA, (23-74)
A = AAg—ALAg (23-175)
Ay = Api+A50-6) + A2 (23-176)
A = Agljp + ApAy (23-71D
Ay =AS-EA|’P+A (23-78)

where £ is found from (23-36) if & is not zero, or E = 1 if & is zero. Then
S = (A /A1) £ [(A15/A1)°—A16/A 1,]" (23-179)

and ¢ is found from (23—35) if h is not zero, or (23—37) if h is zero, taking one
sign in (23—79) for the latitude desired, and the opposite sign for the latitude
hidden from view at the same coordinates. The same sign applies throughout the
map, once it is determined for a point for which the latitude is obviously right or
wrong.

A = arctan [(Ag—A1oS)/(A ;S —A1g)] (23-80)

In this case the ATAN2 function is not used, but 180° must be added to or sub-
tracted from A if the denominator has the same sign as A,;.

If h is not zero, E is initially assumed to be 1. After trial values of ¢ and A are
determined above, an h suitable for that point may be used with the new ¢ in
calculating E; then A g, S, ¢ and \ are recalculated. Iteration continues until the
change in the calculated ¢ is negligible.

If h is zero, since £ =1 and (23—37) is explicit in &, no iteration is required.

Finally, to compute “camera” parameters from given constants K,—K
(Bender, ca. 1970, p. 26—27), given a, €%, and an assumed k,, first the following
three simultaneous equations are solved for X, Y, and Z,, the space coordinates
of the point of perspective divided by ¢ (see description of axes following (23 —40)):

KXo + KoYy + K3Zy = K,
KXo + KoY + KyoZo -Ky (23-81)
KXo + KgYo + KqiZ,, -1
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Then the coordinates (xp, yp) of the principal point of the “space photograph”
are found as the point where a perpendicular dropped from the point of perspec-
tive strikes the plane of the map:

xp = (K\Ks + KaKg + KKK + K& + KPP (23-82)
Yp = (KeKn + KKy + KK NKS® + K& + KPP (23-83)

The parameters reviewed after equation (23-62) are then found as follows (except
that ¢, is an intermediate latitude described after (23—20)):

Ao = arctan (Yy/X,) (23—-84)
P = (X% + Y2 + ZP™ (23-85)
by = arcsin (Zy/P) (23—-86)
&) = ¢y + aresin le? sin ¢, cos ¢y/[P(1—€? sin® &)%)} (23—-87)

which is solved for &, with ¢4 as the first approximation for ¢,, and iterating with
successive substitution.

H = a[P cos dglcos dy—1/(1~¢* sin® ) —hy/al (23-88)

using for h, the height at (d,, Ay). The forward equations (23-15), (23—16), and
(23-38) through (23-40) are now used to calculate X, Y, and Z for (d,, Ay, hq)-
Substituting these values and K,— K/, into (23—41) and (23-42), x, is found as
xf, and y, as y'. Then

w

(3

aresin {[(xo—2p)* + (y,—yo)*IVH' (23—-89)
arctan [(xo=xp)/(yp—yo)] (23-90)

Then, (x¢, y,’) are calculated for (¢, + 0.02° A,) from (23—41) and (23—42) and
the necessary preceding equations, in order to obtain the direction of the Y, axis,
and from this value of (v, y') are calculated

X = (r—xg) cos 0 + (' —yo) sin 0 (23-91)
w = (Y —Yyo) cos 8 — (xy'—x,) sin @ (23-92)
Yy = — arctan [x¢/(y; cos w)] (23-93)
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24. LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION
SUMMARY

Azimuthal.
o Equal-Area.
¢ All meridians in the polar aspect, the central meridian in other aspects, and the
Equator in the equatorial aspect are straight lines.
» The outer meridian of a hemisphere in the equatorial aspect (for the sphere)
and the parallels in the polar aspect (sphere or ellipsoid) are circles.
e All other meridians and parallels are complex curves.
e Not a perspective projection.
e Scale decreases radially as the distance increases from the center, the only
point without distortion.
e Scale increases in the direction perpendicular to radii as the distance increases
from the center.
Directions from the center are true for the sphere and the polar ellipsoidal
forms.
Point opposite the center is shown as a circle surrounding the map (for the
sphere).
Used for maps of continents and hemispheres.
Presented by Lambert in 1772.

HISTORY

The last major projection presented by Johann Heinrich Lambert in his 1772
Beitrige was his azimuthal equal-area projection (Lambert, 1772, p. 75—78). His
name is usually applied to the projection in modern references, but it is oc-
casionally called merely the Azimuthal (or Zenithal) Equal-Area projection. Not
only is it equal-area. with, of course, the azimuthal property showing true direc-
tions from the center of the projection, but its scale at a given distance from the
center varies less from the scale at the center than the scale of any of the other
major azimuthals (see table 21).

Lambert discussed the polar and equatorial aspects of the Azimuthal Equal-
Area projection, but the oblique aspect is just as popular now. The polar aspect
was apparently independently derived by Lorgna in Italy in 1789, and the
latter was called the originator in a publication a century later (USC&GS, 1882,
p. 290). G. A. Ginzburg proposed two modifications of the general Lambert Azi-
muthal projection in 1949 to reduce the angular distortion at the expense of creat-
ing a slight distortion in area (Maling, 1960, p. 206). A common modification was
devised by Ernst Hammer in 1892 and is called the Hammer or Hammer-Aitoff
projection. It consists of halving the vertical coordinates of the equatorial aspect
of one hemisphere and doubling the values of the meridians from center. It re-
tains equality of area, but it is no longer azimuthal.

FEATURES

The Lambert Azimuthal Equal-Area projection is not a perspective projection.
It may be called a “synthetic” azimuthal in that it was derived for the specific pur-
pose of maintaining equal area. The ellipsoidal form maintains equal area, but it is
not quite azimuthal except in the polar aspect, so the name for the general ellip-
soidal form is a slight misnomer, although it looks like the spherical azimuthal
form and has most of its other characteristics.

The polar aspect (fig. 39A), like that of the Orthographic and Stereographic,
has circles for parallels of latitude, all centered about the North or South Pole,
and straight equally spaced radii of these circles for meridians. The difference is,
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FiGURE 39.—Lambert Azimuthal Equal-Area projection. (A) Polar aspect showing one hemisphere; the
entire globe may be included in a circle of 1.41 times the diameter of the Equator. (B) Equatorial aspect;

frequently ueed in atlases for maps of the Eastern and Western hemispheres. (C) Oblique aspect;
centered on lat. 40° N.



184

MAP PROJECTIONS—A WORKING MANUAL

once again, in the spacing of the parallels. For the Lambert, the spacing between
the parallels gradually decreases with increasing distance from the pole. The
opposite pole, not visible on either the Orthographic or Stereographic, may be shown
on the Lambert as a large circle surrounding the map, almost half again as far as
the Equator from the center. Normally, the projection is not shown beyond one
hemisphere (or beyond the Equator in the polar aspect).

The equatorial aspect (fig. 398) has, like the other azimuthals, a straight Equa-
tor and straight central meridian, with a circle representing the 90th meridian
east and west of the central meridian. Unlike those for the Orthographic and
Stereographic, the remaining meridians and parallels are uncommon complex
curves. The chief visual distinguishing characteristic is that the spacing of the
meridians near the 90th meridian and of the parallels near the poles is about 0.7
of the spacing at the center of the projection, or moderately less to the eye.
The parallels of latitude look considerably like circular arcs, except near the 90th
meridians, where they exhibit a noticeable turn toward the nearest pole.

The oblique aspect (fig. 39C) of the Lambert Azimuthal Equal-Area resembles
the Orthographic to some extent, until it is seen that crowding is far less pro-
nounced as the distance from the center increases. Aside from the straight central
meridian, all meridians and parallels are complex curves, not ellipses.

In both the equatorial and oblique aspects, the point opposite the center may be
shown as a circle surrounding the map, corresponding to the opposite pole in the
polar aspect. Except for the advantage of showing the entire Earth in an equal-
area projection from one point, the distortion is so great beyond the inner hemi-
sphere that for world maps the Earth should be shown as two separate hemispheri-
cal maps, the second map centered on the point opposite the center of the first
map.

USAGE

The spherical form in all three aspects of the Lambert Azimuthal Equal-Area
projection has appeared in recent commercial atlases for Eastern and Western
Hemispheres (replacing the long-used Globular projection) and for maps of oceans
and most of the continents and polar regions.

The polar aspect appears in the National Atlas (USGS, 1970, p. 148—149) for
maps delineating north and south polar expeditions, at a scale of 1:39,000,000.
It is used at a scale of 1:20,000,000 f{or the Arctic Region as an inset on the 1978
USGS Map of Prospective Hydrocarbon Provinces of the World.

The USGS has prepared six base maps of the Pacific Ocean on the spherical
form of the Lambert Azimuthal Equal-Area. Four sections, at 1:10,000,000, have
centers at 35° N., 150° E.; 35° N., 135° W.; 35°S., 135° E.; and 40° S., 100° W. The
Pacific-Antarctic region, at a scale of 1:8,300,000, is centered at 20° S. and 165° W.,
while a Pacific Basin map at 1:17,100,000 is centered at the Equator and 160° W.
(The last two maps were originally erroneously labeled with scales that are too
small.) The base maps have been used for individual geographic, geologic, tec-
tonic, minerals, and energy maps. The USGS has also cooperated with the Na-
tional Geographic Society in revising maps of the entire Moon drawn to the spheri-
cal form of the equatorial Lambert Azimuthal Equal-Area.

GEOMETRIC CONSTRUCTION

The polar aspect (for the sphere) may be drawn with a simple geometric con-
struction: In figure 40, if angle AOR is the latitude ¢ and P is the pole at the
center, PA is the radius of that latitude on the polar map. The oblique and equa-
torial aspects have no direct geometric construction. They may be prepared
indirectly by using other azimuthal projections (Harrison, 1943), but it is now
simpler to plot automatically or manually from rectangular coordinates which are
generated by a relatively simple computer program. The formulas are given
below.
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F16URE 40.—Geometric construction of polar Lambert Azimuthal Equal-Area projection.

FORMULAS FOR THE SPHERE

On the Lambert Azimuthal Equal-Area projection for the sphere, a point at a
given angular distance from the center of projection is plotted at a distance from
the center proportional to the sine of half that angular distance, and at its true
azimuth, or

p=2 R sin (¢/2) 24-1)
0= m— Az =180°- Az (20-2)
h' = cos (¢/2) (24—1a)
k' = sec (c/2) (24—1b)

where c is the angular distance from the center, Az is the azimuth east of north
(see equations (5—3) through (5—4b)), and 6 is the polar coordinate east of south.
The term k' is the scale factor in a direction perpendicular to the radius from the
center of the map, not along the parallel, except in the polar aspect. The scale
factor /' in the direction of the radius equals 1/k’. After combining with standard
equations, the formulas for rectangular coordinates for the oblique Lambert Azi-

muthal Equal-Area projection may be written as follows, given R, &, Ao, ¢,
and \:

r=R k' cos ¢ sin (A\—\y) (22-4)
y = Rk’ [cos &, sind — sin b, cos b cos (A—X)] (22-5)

where

k' = {2/[1 + sin ¢, sin & + cos &, cos b cos (A—\,)]h=2 (24-2)
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and (d,, Ay) are latitude and longitude of the projection center and origin. The Y
axis coincides with the central meridian A, ¥ increasing northerly. For the point
opposite the center, at latitude —d&, and longitude A, = 180°, these formulas give
indeterminates. This point, if the map is to cover the entire sphere, is plotted
as a circle of radius 2R.

For the north polar Lambert Azimuthal Equal-Area, with ¢, =90°, since k' is k
for the polar aspect, these formulas simplify to the following (see p. 332 for nu-
merical examples):

x = 2R sin (w/4—¢/2) sin (A—\y) (24—-3)
y = —2R sin (n/4—$/2) cos (A\—\g) (24—-4)
k = sec (w/4—&/2) (24-5)
h =1k = cos (m/4—$/2) (24-6)

or, using polar coordinates,

p = 2R sin (w/4—$/2) (24-7)
0=A-Ny (20-9)

For the south polar aspect, with ¢, = —90°,

xr =2R cos (m/d—d/2) sin (A—XA) (24-8)

y = 2R cos (w/4—d/2) cos (A\—Xq) (24-9)

k = 1/sin (m/4—&/2) (24-10)

h = sin (n/4—¢&/2) (24—11)
or

p = 2R cos (n/4—d/2) (24-12)

B=m — A+ Ay (20—-12)

For the equatorial aspect, letting &, = 0, x is found from (22—4), but
y = Rk’ sin ¢ (24—-13)
and
k" = |2/11 + cos & cos (A — AD]I1? (24-14)
The maximum angular deformation « for any of these aspects, derived from
equations (4—7) through (4-9), and from the fact that &* = k'’ for equal-area
maps:
sin (w/2) = (K= + k') (24-15)
For the inverse formulas for the sphere, given R, &, A, ¥, and y:

¢ = arcsin [cos ¢ sin &, + (y sin ¢ cos d,/p)] (20—-14)

If p = 0, equations (20— 14) through (20—17) are indeterminate, but & = &, and
A=\,

If ¢, is not +90°:

A = Ay + arctan [x sin ¢/(p cos ¢, cos ¢ — y sin ¢, sin ¢)] (20—15)
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If ¢, is 90°:
N = Ay + arctan [x/(—y)] (20—-16)
If ¢, is —90°:
N = Ao + arctan (x/y) (20-17)
In equations (20—14) and (20—15),

p= (@2 +yPne (20-18)
¢ = 2 arcsin [p/(2R)}] (24-16)

It may again be noted that several of the above forward and inverse equations
apply to the other azimuthals.

Table 28 lists rectangular coordinates for the equatorial aspect for a 10° graticule
with a sphere of radius B = 1.0.

FORMULAS FOR THE ELLIPSOID

As noted above, the ellipsoidal oblique aspect of the Lambert Azimuthal Equal-
Area projection is slightly nonazimuthal in order to preserve equality of area. To
date, the USGS has not used the ellipsoidal form in any aspect. The formulas
are analogous to the spherical equations, but involve replacing the geodetic lati-
tude ¢ with authalic latitude B (see equation (3—11)). In order to achieve correct
scale in all directions at the center of projection, that is, to make the center a
“standard point,” a slight adjustment using D is also necessary. The general for-
ward formulas for the oblique aspect are as follows, given a, e, ¢y, Ag. &, and A
(see p. 333 for numerical examples):

x =B D cos B sin (A\—Ay) (24-17)
y = (B/D)cos B, sin B — sin B cos B cos (A—Xry)] (24—18)
where

B = R,|2/[1 + sinP, sinB + cos B, cosPcos (A—Ng) 12 (24-19)
D =a m/(R, cos By) (24-20)
Ry =a (g2 (3—-13)
B = arcsin (¢/qy) B-11

g = (1-¢% |sin $/(1—¢€® sin® &) — (142 )] In
[(1—e sin $)(1 + ¢ sin )] (3-12)
m = cos p/(1-¢? sin? p)12 (14—-15)

and B, is found from (3—11), using g, for ¢, while q, and g, are found from (3—-12)
using ¢, and 90°, respectively, for ¢, and m, is found from (14— 15), calculated for
o). The origin occurs at (d,, Ay), the Y axis coinciding with the central meridian
Ap, and y increasing northerly. For the equatorial aspect, the equations simplify
as follows:

& =acos B sin A—Ag)2/[1 + cos 3 cos (A—Ay)]|2 (24-21)
¥ = (R%a) sin B |21 + cos B cos (A—hg)]|\2 (24-22)

For the polar aspects, D is indeterminate using equations above, but the follow-
ing equations may be used instead. For the north polar aspect, ¢, = 90°,
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TABLE 28.—Lambert Azimuthal Equal-Area projection: Rectangular coordinates for equatorial
aspect (sphere)

[One hemisphere; v coordinate in parentheses under x coordinate)

Long. 0° 10° 20° 30° 10°
Lat.

9%0° 0.00000 0.00000 0.00000 0.00000 0.00000
(1.41421)  (1.41421)  (1.41421) (1.41421) (1.41421)
80 .00000 .03941 .07788 .11448 .14830
(1.28558)  (1.28702)  (1.29135) (1.29851)  (1.30842)
70 e .00000 .07264 .14391 21242 27676
(1.14715)  (1.14938)  (1.15607)  (1.16725)  (1.18296)
60 __ .00000 10061 .19948 .29535 .38649
(1.00000) (1.00254)  (1.01021)  (1.02311)  (1.04143)
5 .00000 12353 24549 .36430 .47831
( .84524) ( .B4776) ( .B5539) ( .86830) ( .88680)
40 .00000 .14203 .28254 .41999 55281
( .68404) ( .68631) ( .69317) ( .70483) ( .72164)
30 .00000 .15624 31103 46291 61040
( .51764) ( .51947) ( .52504) ( .53452) ( .54826)
20 .00000 .16631 .33123 .49337 .65136
( .34730)  ( .34858) ( .35248) ( .35915) ( .36883)
10 __ .00000 17231 .34329 51158 .67588
(.17431) ( .17497)  ( .17698)  ( .18041) ( .18540)
0 .00000 17431 .34730 51764 .68404
( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

Radius of sphere = 1.0,
Origin: (r, y)=0 at {lat., long.)=0. ¥ axis increases north. Other quadrants of hemisphere are symmetrical.

r=psin (A—N\g) (21 -30)

¥ = —p cos (A\—N\g) (21-31)

k = p/la m) (21-32)
where

p=algp—q)? (24-23)

and g, and g are found from (3-12) as before and m from (14-15) above. Since
the meridians and parallels intersect at right angles, and this is an equal-area
projection, i = 1jk.

For the south polar aspect, (&, = —90°), equations (21—30) and (21-32) remain
the same, but

y = pcos (A—N\gy) (24—-24)
and
p = alg,+q)? (24-25)

For the inverse formulas for the ellipsoid, the oblique and equatorial aspects
(where ¢, is not +90°) may be solved as follows, given a, e, &;, Aq, x, and y.

_ (1—-e?sin® ¢)? q __sind 1 1-e sin ¢ _
b=¢+ 2 cos ¢ [l—e l—e'zsin§¢+ 2e In 1+esin ¢ (3-16)

N = Ny + arctan [x sin c¢/(D p cos B, cos ¢, — D?y sin B, sin ¢,)]  (24—26)
where

q = gp lcos ¢, sin B, + (Dy sin c, cos Bi/p)] (24-27)
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TABLE 28.—Lambert Azimuthal Equal-Area projection: Rectangular coordinates for equatorial
aspect (sphere)—Continued

w 50° 60° 70° 80° 90°
Lat.

90° 0.00000  0.00000  0.00000  0.00000  0.00000
(1.41421)  (1.41421) (1.41421) (1.41421) (1.41421)
80 . 17843 20400 22420 23828 24558
(1.32096)  (1.33594)  (1.35313) (1.37219)  (1.39273)
70 33548 38709 43006 46280 48369
(1.20323)  (1.22806) (1.25741)  (1.29114)  (1.32893)
60 o __ 47122 54772 61408 66797 70711
(1.06544)  (1.09545)  (1.13179)  (1.17481)  (1.22474)
50 e 58579 68485 77342 84909 190904
(91132) ( 94244) ( .98088)  (1.02752) (1.08335)
40 67933 79778 90620  1.00231 1.08335
( 74411)  ( 77298) ( .B0919)  ( .85401)  ( .90904)
80 o _____ 15197 88604  1.01087  1.12454  1.22474
( 56674) ( .59069) ( .62108) ( .65927)  ( .70711)
20 80380 94928  1.08635  1.21347  1.32893
( 38191) ( .39896) ( .42078) ( .44848) ( .48369)
10 o 83488 98731  1.13192  1.26747  1.39273
(19217)  ( .20102) ( .21240) ( .22694) ( .24558)
0 84524 1.00000  1.14715  1.28558  1.41421
( .00000)  ( .00000)  ( .00000) ( .00000)  ( .00000)

but if p = 0, then ¢ = g, sin B;, and A—A,.
p = (/D + (Dy)* | (24-28)
¢, = 2 aresin (p/2 R ) (24-29)

and D, R, ¢y, and B, are found from equations (24-20), (3-13), 3-12), (3—11),
and (14-15), as in the forward equations above. The factor ¢, is not the true
angular distance, as ¢ is in the spherical case, but it is a convenient number
similar in nature to ¢, used to find & and A. Equation (3—16) requires iteration by
successive substitution, using aresin (¢/2) as the first trial & on the right side,
calculating ¢ on the left side, substituting this new & on the right side, ete., until
the change in ¢ is negligible. If, in equation (24-27),

g = £1-[(1-)42 )] In [(1=e)(1+e)} (14-20)
the iteration does not converge, but ¢ = *90°, taking the sign of q.

To avoid the iteration, equations (3—16), (24-27), and (14—20) may be re-
placed with the series

b =B + (¢%3 + 31180 + 517¢%/5040 + .. ) sin 23
+ (23/360 + 251e%/3780 + .. .)sin 4B + (761945360 + . . .)
sin6B + ... (3-18)
where B, the authalic latitude, is found thus:
B = arcsin [cos ¢, sin B; + (Dy sin ¢, cos 3,/p)] (24-30)

Equations (24-26), (24-28), and (24—-29) still apply. In (24-30), ifp = 0,8 =
B. For improved computational efficiency using this series, see p.19.
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TABLE 29.—Ellipsoidal polar Lambert Azimuthal Equal-Area projection (International ellipsoid)

Latitude Radius, meters h k
90° 0.0 1.000000 1.000000
89 111,698.4 .999962 1.000038
88 223,387.7 .999848 1.000152
87 3356,058.5 999657 1.000343
86 446,701.8 .999391 1.000610
85 558,308.3 .999048 1.000953
84 669,868.8 .998630 1.001372
83 781,374.2 .998135 1.001869
82 892,815.4 997564 1.002442
81 1,004,183.1 996918 1.003092
80 1,115,468.3 996195 1.003820
79 1,226,661.9 995397 1.004625
78 1,337,754.7 994522 1.005508
71 1,448,737.6 993573 1.006469
76 1,559,601.7 992547 1.007509
75 1,670,337.9 991446 1.008628
74 1,780,937.2 .990270 1.009826
73 1,891,390.6 989018 1.011104
72 2,001,689.2 987691 1.012462
71 2,111,824.0 .986289 1.013902
70 2,221,786.2 984812 1.015422

h=scale factor along meridian.
& =scale factor along parallel.

The inverse formulas for the polar aspects involve relatively simple transforma-
tions of above equations (21—30), (21-31), and (24—23), except that ¢ is found
from the iterative equation (3—16), listed just above, in which g is calculated as
follows:

q = =lgp, —(p/a)?’] (24—31)
taking the sign of ¢,. The series (3—18) may be used instead for ¢, where
B = = aresin [1-p¥[a®[1-((1—e®/2 ¢)) In (1-e)/(1+e))]]] (24-32)

taking the sign of ¢,. In any case,

p = (2 +yn (20-18)
while
A = Ao + arctan [z/(—y)] (20—16)
for the north polar case, and
N = Ao + arctan (x/y) (20-17)

for the south polar case.

Table 29 lists polar coordinates for the ellipsoidal polar aspect of the Lambert
Azimuthal Equal-Area, using the International ellipsoid.

To convert coordinates measured on an existing Lambert Azimuthal Equal-
Area map (or other azimuthal map projection), the user may choose any meridian
for Ao on the polar aspect, but only the original meridian and parallel may be used
for Ao and &,;, respectively, on other aspects.
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25. AZIMUTHAL EQUIDISTANT PROJECTION
SUMMARY

Azimuthal.

Distances measured from the center are true.

Distances not measured along radii from the center are not correct.

e The center of projection is the only point without distortion.

Directions from the center are true (except on some oblique and equatorial
ellipsoidal forms).

Neither equal-area nor conformal.

All meridians on the polar aspect, the central meridian on other aspects, and
the Equator on the equatorial aspect are straight lines.

Parallels on the polar projection are circles spaced at true intervals (equidistant
for the sphere).

e The outer meridian of a hemisphere on the equatorial aspect (for the sphere) is
a circle.

All other meridians and parallels are complex curves.

Not a perspective projection.

Point opposite the center is shown as a circle (for the sphere) surrounding
the map.

Used in the polar aspect for world maps and maps of polar hemispheres.

« Used in the oblique aspect for atlas maps of continents and world maps for avia-
tion and radio use.

Known for many centuries in the polar aspect.

HISTORY

While the Orthographic is probably the most familiar azimuthal projection, the
Azimuthal Equidistant, especially in its polar form, has found its way into many
atlases with the coming of the air age for maps of the Northern and Southern
Hemispheres or for world maps. The simplicity of the polar aspect for the sphere,
with equally spaced meridians and equidistant concentric circles for parallels of
latitude, has made it easier Lo understand than most other projections. The pri-
mary feature, showing distances and directions correctly from one point on the
Earth's surface, is also easily accepted. In addition, its linear scale distortion is
moderate and falls between that of equal-area and conformal projections.

Like the Orthographic, Stereographic, and Gnomonic projections, the Azimuthal
Equidistant was apparently used centuries before the 15th-century surge in scien-
tific mapmaking. It is believed that Egyvptians used the polar aspeect for star
charts, but the oldest existing celestial map on the projection was prepared in
1426 by Conrad of Dyffenbach. It was also used in principle for small areas by
mariners from earliest times in order to chart coasts, using distances and direc-
tions obtained at sea.

The first clear examples of the use of the Azimuthal Equidistant for polar maps
of the Earth are those included by Gerardus Mercator as insets on his 1569 world
map, which introduced his famous cylindrical projection. As Northern and South-
ern Hemispheres, the projection appeared in a manuscript of about 1510 by the
Swiss Henricus Loritus, usually called Glareanus (1488—1563), and by several
others in the next few decades (Keuning, 1955, p. 4-5). Guillaume Postel is given
credit in France for its origin, although he did not use it until 1581. Antonio
Cagnoli even gave the projection his name as originator in 1799 (Deetz and
Adamms, 1934, p. 163; Steers, 1970, p. 234). Philippe Hatt developed ellipsoidal
versions of the oblique aspect which are used by the French and the Greeks for
coastal or topographic mapping.
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Two projections with similar names are called the Two-Point Azimuthal and the
Two-Point Equidistant projections. Both were developed about 1920 independ-
ently by Maurer (1919) of Germany and Close (1921) of England. The first pro-
Jection (rarely used) is geometrically a tilting of the Gnomonic projection to pro-
vide true azimuths from either of two chosen points instead of from just one. Like
the Gnomonic, it shows all great circle arcs as straight lines and is limited to one
hemisphere. The Two-Point Equidistant has received moderate use and interest,
and shows true distances, but not true azimuths, from either of two chosen points
to any other point on the map, which may be extended to show the entire world
(Close, 1934).

The Chamberlin Trimetric projection is an approximate “three-point equidis-
tant” projection, constructed so that distances from three chosen points to any
other point on the map are approximately correct. The latter distances cannot be
exactly true, but the projection is a compromise which the National Geographic
Society uses as a standard projection for maps of most continents. This projection
was geometrically constructed by the Society, of which Wellman Chamberlin
(1908 —76) was chief cartographer for many years.

An ellipsoidal adaptation of the Two-Point Equidistant was made by Jay K.
Donald of American Telephone and Telegraph Company in 1956 to develop a grid
still used by the Bell Telephone system for establishing the distance component of
long distance rates. Still another approach is Bomford's modification of the Azi-
muthal Equidistant, in which the usual circles of constant scale factor perpen-
dicular to the radius from the center are made ovals to give a better average scale
factor on a map with a rectangular border (Lewis and Campbell, 1951, p. 7,
12-15).

FEATURES

The Azimuthal Equidistant projection, like the Lambert Azimuthal Equal-
Area, is not a perspective projection, but in the spherical form, and in some of the
ellipsoidal forms, it has the azimuthal characteristic that all directions or azimuths
are correct when measured from the center of the projection. As its special
feature, all distances are at true scale when measured between this center and
any other point on the map.

The polar aspect (fig. 41A), like other polar azimuthals, has circles for parallels
of latitude, all centered about the North or South Pole, and equally spaced radii of
these circles for meridians. The parallels are. however, spaced equidistantly on
the spherical form (or according to actual parallel spacings on the ellipsoid). A
world map can extend to the opposite pole, but distortion becomes infinite. Even
though the map is finite, the point for the opposite pole is shown as a circle twice
the radius of the mapped Equator, thus giving an infinite scale factor along that
circle. Likewise, the countries of the outer hemisphere are visibly increasingly
distorted as the distance from the center increases, while the inner hemisphere
has little enough distortion to appear rather satisfactory to the eye, although the
east-west scale along the Equator is almost 60 percent greater than the scale at
the center.

As on other azimuthals, there is no distortion at the center of the projection
and. as on azimuthals other than the Stereographic, the scale cannot be reduced
at the center to provide a standard circle of no distortion elsewhere. It is possible
to use an average scale over the map involved to minimize variations in scale error
in any direction, but this defeats the main purpose of the projection, that of provid-
ing true distance from the center. Therefore, the scale at the projection center
should be used for any Azimuthal Equidistant map.

The equatorial aspect (fig. 41B) is least used of the three Azimuthal Equidis-
tant aspects, primarily because there are no cities along the Equator from which
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FIGURE 41.—Azimuthal Equidistant projection. (A) Polar aspect extending to the South Pole; commonly
used in atlases for palar maps. (B) Equatorial aspect. (C) Oblique aspect centered on lat. 40° N. Distance
from the center is true to scale.
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distances in all directions have been of much interest to map users. Its potential
use as a map of the Eastern or Western Hemisphere was usually supplanted first
by the equatorial Stereographic projection, later by the Globular projection (both
graticules drawn entirely with arcs of circles and straight lines), and now by the
equatorial Lambert Azimuthal Equal-Area.

For the equatorial Azimuthal Equidistant projection of the sphere, the only
straight lines are the central meridian and the Equator. The outer circle for one
hemisphere (the meridian 90° east and west of the central meridian) is equidis-
tantly marked off for the parallels, as it is on other azimuthals. The other merid-
ians and parallels are complex curves constructed to maintain the correct dis-
tances and azimuths from the center. The parallels cross the central meridian at
their true equidistant spacings, and the meridians cross the Equator equidis-
tantly. The map can be extended, like the polar aspect, to include a much-distorted
second hemisphere on the same center.

The oblique Azimuthal Equidistant projection (fig. 41C) rather resembles the
oblique Lambert Azimuthal Equal-Area when confined to the inner hemisphere
centered on any chosen point between Equator and pole. Except for the straight
central meridian, the graticule consists of complex curves, positioned to maintain
true distance and azimuth from the center. When the outer hemisphere is included,
the difference between the Equidistant and the Lambert becomes more pro-
nounced, and while distortion is as extreme as in other aspects, the distances and
directions of the features from the center now outweigh the distortion for many
applications.

USAGE

The polar aspect of the Azimuthal Equidistant has regularly appeared in com-
mercial atlases issued during the past century as the most common projection for
maps of the north and south polar areas. It is used for polar insets on Van der
Grinten-projection world maps published by the National Geographic Society and
used as base maps (including the insets) by USGS. The polar Azimuthal Equidis-
tant projection is also normally used when a hemisphere or complete sphere
centered on the North or South Pole is to be shown. The oblique aspect has been
used for maps of the world centered on important cities or sites and occasionally
for maps of continents. Nearly all these maps use the spherical form of the
projection.

The USGS has used the Azimuthal Equidistant projection in both spherical and
ellipsoidal form. An oblique spherical version of the Earth centered at lat. 40°N.,
long. 100° W., appears in the National Atlas (USGS, 1970, p. 329). At a scale of
1:175.000,000, it does not show meridians and parallels, but shows circles at
1,000-mile intervals from the center. The ellipsoidal oblique aspect is used for the
plane coordinate projection system in approximate form for Guam and in nearly
rigorous form for islands in Micronesia.

GEOMETRIC CONSTRUCTION

The polar Azimuthal Equidistant is among the easiest projections to construct
geometrically, since the parallels of latitude are equally spaced in the spherical
case and the meridians are drawn at their true angles. There are no direct geomet-
ric constructions for the oblique and equatorial aspects. Like the Lambert Azi-
muthal Equal-Area, they may be prepared indirectly by using other azimuthal
projections (Harrison, 1943), but automatic computer plotting or manual plotting
of calculated rectangular coordinates is the most suitable means now available.
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FORMULAS FOR THE SPHERE

On the Azimuthal Equidistant projection for the sphere, a given point is plotted
at a distance from the center of the map proportional to the distance on the sphere
and at its true azimuth, or

p=R ¢ (25-1)
8=m—Az=180°— Az (20-2)

where c is the angular distance from the center, Az is the azimuth east of north
(see equations (5—3) through (5-4b)), and 8 is the polar coordinate east of south.
For k' and k', see equation (25—2) and the statement below. Combining various
equations, the rectangular coordinates for the oblique Azimuthal Equidistant
projection are found as follows, given R, ¢;, Ay, &, and X (see p. 337 for numerical
examples):

x=R k' cos b sin (A—\) (22-4)
y =R k' [cos ¢, sin b — sin &, cos ¢ cos (A=Ny)] (22-5)
where
k' =c/sin ¢ (25-2)
cos ¢ =sin ¢; sin & + cos &, cos b cos (A—Ag) (5-3)

and (,, Ag) are latitude and longitude of the center of projection and origin. The
Y axis coincides with the central meridian A, and y increases northerly. Ifcos ¢ =
1, equation (25—2)isindeterminate, but k' = 1, and v =y = 0. If cos ¢ = —1, the point
opposite the center (—d,, Ay = 180°) is indicated; it is plotted as a cirele of radius
wR. The term k' is the scale factor in a direction perpendicular to the radius from
the center of the map, not along the parallel, except in the polar aspect. The
scale factor &’ in the direction of the radius is 1.0.
For the north polar aspect, with ¢, = 90°,

r o= R(m/2—¢) sin (A—X\y) (25-3)
y =— R (n/2—¢&) cos (A=) 25—
k = (m/2-d)cos ¢ (25-5)
h =10

p =R(w/2-¢) (25—-06)
8 =X -1, (20—-9)

For the south polar aspect, with ¢, = ~90°,

r = R(w/2+d) sin (A=) 25-7)
y =R (w/2+d) cos (A\—)\y) (25—8)
k = (m/2 + d)icos 26—-9)
h =10

p =R(m2+4) (25-10)
0 =1 - N+ A (20—-12)

For the equatorial aspect, with ¢; = 0, x is found from (22-4) and &’ from (25—2)
but ’

¥y =REK sind (25-1D
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TABLE 30.—Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect
(sphere)

[One hemisphere: R=1. y coordinales in parentheses under x coordinates]

w 0° 10° 20° 30° 40°
Lat.

90° o 0.00000 0.00000 0.00000 0.00000 0.00000
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080)
80 o .00000 .04281 .08469 12469 .16188
(1.39626)  (1.39829) (1.40434) (1.41435) (1.42823)
10 e .00000 07741 .16362 22740 29744
(1.22173)  (1.22481)  (1.23407)  (1.24956)  (1.27137)
60 e .00000 10534 .20955 31145 .40976
(1.04720)  (1.05068) (1.06119) (1.07891)  (1.10415)
50 .00000 12765 .26441 37931 50127
( .87266) ( .87609) ( .88647 ( .90408) ( .92938)
40 .00000 14511 28959 43276 57386
( .69813) ( .70119) ( .71046) ( .72626) ( .74912)
30 o .00000 15822 31607 47314 .62896
( .52360) ( .52606) ( .53355) ( .54634) ( .66493)
20 e .00000 .16736 33454 50137 .66'762
( .34907) ( .35079) ( .35601) ( .36497) ( .37803)
0 .00000 17275 34546 51807 69054
( .17453) ( .17541) ( .17810) ( .18270) ( .18943)
0 .00000 17453 .34907 52360 69813
( .00000) ( .00000) ( .00000) ( .00000) ( .00000)
and
cos ¢ = cos ¢ cos (A—Xg) (25—-12)

The maximum angular deformation w for any of these aspects, using equations
(4—T) through (4—9), since ' = 1.0:

sin Yew = (K'—D/I(k'+1) (25—13)
= (c—sin ¢)/(c +sin ¢) (25-~-14)

For the inverse fornndas for the sphere, given R, &, Ao, x, and y:
& = arcsin [cos ¢ sin ¢, + (y sin ¢ cos ¢y/p)] (20—14)
If p = 0, equations (20— 14) through (20-17) are indeterminate, but ¢ = ¢, and
A= Ao
If ¢, is not =90°
A = Ay + arctan [ sin ¢/(p cos &, cos ¢c—y sin ¢ sin ¢)) (20-15)
If &, is 90°:
N = Ao + arctan [x/(—y)] (20-16)
If &, is —90°:
A = Ay + arctan (x/y) (20—-17)
In equations (20—14) and (20—15),

p (‘r2 + yZ)w (20_18)
¢ = piR (25-15)
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TaBLE 30.—Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect

(sphere)—Continued
Long. 50° 60° 70° 80° 90°
Lat.
90° - 0.00000  0.00000  0.00000  0.00000  0.00000
(157080)  (1.57080)  (1.57080)  (1.57080)  (1.57080)
80 o 19529 22399 24706 26358 27277
(1.44581)  (1.46686) (1.49104) (1.51792)  (1.54693)
0 e 36234 42056 47039 53724
(1.29957)  (1.33423) (1.37533) (1.42273)  (1.47607)
60 50301 58948 66711 73343 78540
(1.13733)  (1.17896)  (1:22963)  (1.28993)  (1.36035)
50 e 61904 73106 83536 92935  1.00969
(.96306)  (1.00602)  (1.05942) (1.12464)  (1.20330)
0 71195 84583 97392  1.09409 120330
(.77984)  ( 81953) ( .B6967) ( .93221)  (1.00969)
80 e 78296 93436  1.08215 122487  1.36035
(59010) ( 62291) ( .66488) ( .71809)  ( .78540)
20 83301 99719 115965 131964  1.47607
(.39579) ( 41910) (44916) ( .4B772)  ( .53724)
0 86278 103472 120620  1.37704  1.54693
(.19859) ( .21067) ( .22634) ( .24656) ( .27277)
0 87266 104720 122173 139626 157080
(.00000)  ( .00000)  ( .00000) ( .00000) ( .00000)

Radius of sphere = 1.0, )
Origin: (+, y)=0 at (lat., Jong.)= 0. ¥ axis increases north. Other quadrants of hemisphere are symmetrical.

Except for (256—15), the above inverse formulas are the same as those for the
other azimuthals, and (25—2) is the only change from previous azimuthals among
the general (oblique) formulas (22~4) through (5-3) for the forward calculations
as listed above.

Table 30 shows rectangular coordinates for the equatorial aspect for a 10° grati-
cule with a sphere of radius £ = 1.0.

FORMULAS FOR THE ELLIPSOID

The formulas for the polar aspect of the ellipsoidal Azimuthal Equidistant pro-
jection are relatively simple and are theoretically accurate for a map of the entire
world. However, such a use is unnecessary because the errors of the sphere
versus the ellipsoid become insignificant when compared to the basic errors of
projection. The polar form is truly azimuthal as well as equidistant. Given a. ¢, ¢,,
Ao, &, and A, for the north polar aspect, ¢, = 90°(see p. 338 for numerical examples):

x = psin (A=A (21-30)
¥ = —pcos (A=Nhg) (21-31)
k = p/la n) (21-32)
where
po= M-M i (25-16)
M = a[(1-e%4-3¢" 645256~ . . . )}b—(3e*/8 + 3e'/32
+ 45¢%1024 + .. .)sin2¢ + (1507256 + 45¢°71024 + . . .)
sind ¢ — (35¢%3072+ .. . )sin6d + ... | (3—21)

with M, the value of M for a & of 90°,
and m = cos &/(1—¢? sin® ) (14-15)



198

MAP PROJECTIONS—A WORKING MANUAL

TanLe 31.—Ellipsoidal Azimuthal Equidistant prajection (International ellipsoid)—Polar Aspect

Latitude Radius, meters h k
90° 0.0 1.0 1.000000
89 _ 111,699.8 1.0 1.000051
88 o ___ 223,399.0 1.0 1.000203
87 — 335,096.8 1.0 1.000457
86 . ____. 446,792.5 1.0 1.000813
85 558,485.4 1.0 1.001270
84 . 670,175.0 1.0 1.001830
8 781,860.4 1.0 1.002492
82 - - 893,541.0 1.0 1.003256
8l 1,005,216.2 1.0 1.004124
80 . 1,116,885.2 1.0 1.005095
[ 1,228,5647.5 1.0 1.006169
£ - 2 1,340,202.4 1.0 1.007348
T e 1,451,849.2 1.0 1.008631
i 1,563,487.4 1.0 1.010019
1D e 1,675,116.3 1.0 1.011513
T4 1,786,735.3 1.0 1.013113
T3 [, 1,898,343.8 1.0 1.014821
T2 o ___ 2,009,941.3 1.0 1.016636
) 2,121,527.1 1.0 1.018560
0 ____ 2,233.100.9 1.0 1.020594

h = scale factor along meridian.
k = scale lactor alonyg parallel.

For improved computational efficiency using this series, see p. 19.
For the south polar aspect, the equations for the north polar aspect apply,
except that equations (21-31) and (25— 16) become

Yy = pcos (A—Np) (24-23)
p =M, + M (25-17)

The origin falls at the pole in either case, and the Y axis [ollows the central
meridian A,. For the north polar aspect. A, is shown below the pole, and y increases
along A, toward the pole. For the south polar aspect, A, i3 shown above the pole.
and y increases along A, away from the pole.

Table 31 lists polar coordinates for the ellipsoidal aspect of the Azimuthal
Equidistant, using the International ellipsoid.

For the oblique and equatorial aspects of the ellipsoidal Azimuthal Equidistant,
both nearly rigorous and approximate sets of formulas have been derived. For
mapping of Guam, the National Geodetic Survey and the USGS use an approxima-
tion to the ellipsoidal oblique Azimuthal Equidistant called the “Guam projection.”
It is described by Claire (1968, p. 52—-53) as follows (changing his symbols to
match those in this publication):

The plane coordinates of the geadetic stations on Guam were obtained by first computing the
geodetic distances [¢] and azimuths [Az] of all points from the origin by inverse computations. The
coordinates were then computed by the equations: [+ = ¢ sin Az and ¢ = ¢ cos Azl. This really gives a
true azimuthal equidistant projection. The equations given here are simpler. however, than those for
a geodetic inverse computation. and the resulting coordinates computed using them will not be
signifieantly different from those computed rigidly by inverse computation. This is the reason it is
called an approximate azimuthal equidistant projection.

The formulas for the Guam projection are equivalent to the following:

a (N=N\y) cos dbi(1—¢? sin? )2 (25—18)
M- M, + #*tan & (] —¢? sin? $)'%/(2a) (26—-19)

£
Yy
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where M and M, are found from equation (3—21) for & and &,. Actually, the
original formulas are given in terms of seconds of rectifving latitude and geodetic
latitude and longitude, but they may be written as above. The v coordinate is thus
taken as the distance along the parallel, and y is the distance along the central
meridian A\, with adjustment for curvature of the parallel. The origin occurs at (&,
Ao). the Y axis coincides with the central meridian, and y increases northerly.

For Guam, ¢, = 13°28°20.87887" N. lat. and A\, = 144°44'55.50254" E. long., with
50,000 m added to both x and y to eliminate negative numbers. The Clarke 1866
ellipsoid is used. The above formulas provide coordinates within 5 mm at full scale
of those using ellipsoidal Polyconic formulas (p. 129) for the region of Guam.

A more complicated and more accurate approach to the oblique ellipsoidal
Azimuthal Equidistant projection is used for plane coordinates of various individ-
ual islands of Micronesia. In this form, the true distance and azimuth of any point
on the island or in nearby waters are measured from the origin chosen for the
island and along the normal section or plane containing the perpendicular to the
surface of the ellipsoid at the origin. This is not exactly the same as the shortest
or geodesic distance between the points, but the difference is negligible (Bomford,
1971, p. 125). This distance and azimuth are plotted on the map. The projection is,
therefore, equidistant and azimuthal with respect to the center and appears to
satisfy all the requirements for an ellipsoidal Azimuthal Equidistant projection,
although it is described as a “modified” form. The origin is assigned large-enough
values of x and y to prevent negative readings.

The formulas for calculation of this distance and azimuth have been published in
various forms, depending on the maximum distance involved. The projection
system for Micronesia makes use of “Clarke’s best formula” and Robbins' inverse
of this. These are considered suitable for lines up to 800 km in length. The
formulas below, rearranged slightly from Robbins’ formulas as given in Bomford
(1971, p. 136—137), are extended to produce rectangular coordinates. No itera-
tion is required. They are listed in the order of use, given a central point at lat. &,,
long. Ay, coordinates x, and y, of the central point, the Y axis along the central
meridian A, y increasing northerly, ellipsoidal parameters a and ¢, and ¢ and A.

To find x and y:

N, = a/(1—¢* sin® ¢,)'* (4—20a)
N = a/(1-€® sin® $)'* 4-20)
U = arctan [(1-¢®) tan ¢ + 2N, sin &b,/A(N cos ¢)] (25~20)
Az = arctan lsin (A—\y)/[cos &, tan § — sin &, cos (A\-—-Ay)|! (26—-21)

The ATANZ2 Fortran funetion should be used with equation (25—21), but it is
not applicable to (25-20).
If sin Az = 0,

§ = = arcsin (cos ¢, sin ¢ — sin &, cos V) (25—22)

taking the sign of cos Az.
If sin Az # 0,

s = arcsin [sin (A—\,) cos /sin Az] (25—22a)
In either case,
G = esin o,/(1—-¢9)2 (25-23)
H = ¢ cos ¢, cos Az/(1—-¢?)'2 (25-24)
¢ = N, s|1-s2H%1-H?/6 + (sY/8)GH(1-2H?)

+ (sY1200[H*4~TH?) -3G*(1-TH®)| — (s*/48)GH! (25—-25)
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25. AZIMUTHAL EQUIDISTANT PROJECTION

= ¢ sin Az + ¥, (25-26)
y = ccos Az + ¥y, (25-27)

=
|

where ¢ is the geodesic distance, and Az is azimuth east of north. .
Table 32 shows the parameters for the various islands mapped with this

projection. .
Inverse formadas for the polar ellipsoidal aspect, given a, e, by, Ao, X, and y:

b= p+ (3e,/2 — 27,732 + ... )sin2u + (21 ¢,%16 — 55 ¢,*/32 + ... ) sin

4u + (151¢,%/96 — . . . )sinGp + (1097¢,*/512— . . . )sin8p + . .. (3—-26)
where
e =11 = (A=eD12Y[1 + (1-€3)7] (3—24)
n = Mila (1-e%4-3e*/64—5e%256— . . . )] (7-19)
M =M, — p for the north polar case, (25-28)
and
M =p — M, for the south polar case. (25—29)

For improved computational efficiency using series (3-26) see p. 19. Equation
(83-21), listed with the forward equations, is used to find M, for = 90°. For either
case,

p = W+ A2 (20-18)

For longitude, {or the north polar case,
N = Ay + arctan [x/(—y)] (20—-16)

For the south polar case,

N = Ay + arctan (2/y) (20—-17)
Inverse formulas for the Guam projection (Claire, 1968, p. 53) involve an itera-
tion of two equations, which may be rearranged and rewritten in the following
form consistent with the above formulas. Given a, e, &, Ay, ¥, and y, M, is
calculated for ¢, from (3—21), given with forward equations. (If false northings

and eastings are included in x and y, they must be subtracted first.)
Then, first assuming ¢ = ¢,

M=M, + y — 22 tan & (1-¢” sin® $)"¥(2 a) (25-30)

Using this M, p is calculated from (7-19) and inserted into the right side of
(3—26) to solve for a new ¢ on the left side. This is inserted into (25—30), a new M
is found, and it is resubstituted into (7—19), p into (3—26), etc., until ¢ on the left
side of (3—26) changes by less than a chosen convergence figure, for a final .
Then

A =X + x (1—¢? sin® dp)¥(a cos ) (25-31)

The inverse Guam formulas arbitrarily stop at three iterations, which are suffi-
cient for the small area.
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For the Micronesia version of the ellipsoidal Azimuthal Equidistant projection,
the inverse formulas given below are “Clarke’s best formula,” as given in Bomford
(1971, p. 133) and do not involve iteration. They have also been rearranged to
begin with rectangular coordinates, but they are also suitable for finding latitude
and longitude accurately for a point at any given distance ¢ (up to about 800 km)
and azimuth Az (east of north) from the center, if equations (25—32) and (25—33)
are deleted. In order of use, given a, e, central point at lat. ¢,, long. A, rectangu-
lar coordinates of center xy, y,, and . and y for another point, to find ¢ and A:

¢ = [x—xa® + (¥ — w1 (25-32)
Az = arctan [(x—xg)(y—yo)] (25—33)
N, = a/(1—¢®sin® &) (4—20a)
A = — ¢%cos? b, cos? Az/(1—e?) (25~34)
B = 3¢* (1—-A) sin ¢, cos ¢; cos Az/(1—¢?) (25-35)
D = ¢/N, (25—36)
E =D-A(1+AD% - BU+3A)D*/24 (25-37)
F =1- AE*2 — BE*8 (25-38)
= arcsin (sin ¢, cos E + cos ¢, sin E cos Az) (25—39)
N = A, + arcsin (sin Az sin E/cos ¥) (25—40)
& = arctan [(1—¢*F sin &y/sin §) tan W/(1-e9)] (25—41)

The ATAN2 function of Fortran, or equivalent, should be used in equation (25—33),
but not (25—41).

To convert coordinates measured on an existing Azimuthal Equidistant map (or
other azimuthal map projection), the user may choose any meridian for A, on the
polar aspect, but only the original meridian and parallel may be used for A, and &,
respectively, on other aspects.
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26. MODIFIED-STEREOGRAPHIC CONFORMAL PROJECTIONS
SUMMARY

® Modified azimuthal.

e Conformal.

e All meridian and parallels are normally complex curves, although some may be
straight under some conditions.

@ Scale is true along irregular lines, but map is usually designed to minimize scale
variation throughout a selected region.

e Map is normally not symmetrical about any axis or point.

@ Used for maps of continents in the Eastern Hemisphere, for the Pacific Ocean,
and for maps of Alaska and the 50 United States.

® Specific forms devised by Miller, Lee, and Snyder, 1950-84.

HISTORY AND USAGE

Two short mathematical formulas, taken as a pair, absolutely define the con-
formal transformation of one surface onto another surface. These formulas (see
p- 27) are called the Cauchy-Riemann equations, after two 19th-century mathe-
maticians who added rigorous analysis to principles developed in the middle of the
18th century by physicist D’Alembert. Much later, Driencourt and Laborde
(1932, vol. 4, p. 242) presented a fairly simple series (equation (26—4) below
without the R), involving complex algebra (with imaginary numbers), that fully
satifies the Cauchy-Riemann equations and permits the formation of an endless
number of new conformal map projections when certain constants are changed.

The advantage of this series is that lines of constant scale may be made to
follow one of a variety of patterns, instead of following the great or small circles
of the common conformal projections. The disadvantage is that the length of the
series and the computations become increasingly lengthy as the irregularity of
the lines of constant scale increases, but this problem has decreased with the
development of computers.

Laborde (1928; Reignier, 1957, p. 130) applied this transformation to the
mapping of Madagascar, starting with the Transverse Mercator projection and
applying the complex equation up to the third-order or cubic terms. Miller (1953)
used the same order of complex equation, but began with an oblique Stereo-
graphic projection. His resulting map of Europe and Africa has oval lines of
constant scale (fig. 42); this projection is called the Miller Oblated (or Prolated)
Stereographic. He subsequently (Miller, 1955) prepared similar projections for
Asia and Australasia, each precisely conformal, but he linked them with noncon-
formal “fill-in” projections to provide a continuous map (in several sheets) of the
land masses of the Eastern Hemisphere.

Lee (1974) designed a map of the Pacific Ocean, also using an oblique Stereo-
graphic with a third-order complex polynomial. The third-order polynomials used
by Laborde, Miller, and Lee make relatively moderate computational demands,
because several of the coefficients are zero, and the complex algebra can be
readily simplified to equations without imaginary numbers. Recently Reilly (1973)
and the writer (Snyder, 1984a, 1985a) have used much higher order complex
equations, but modern computers can readily handle them. Reilly used sixth-
order coefficients with the regular Mercator for the new official New Zealand
Map Grid, while the writer, beginning with oblique Stereographic projections,
used sixth-order coefficients for a map of Alaska and tenth-order for a map of the
50 United States (figs. 43, 44). For these sixth- and tenth-order equations, only
one coefficient iszero, but the other coefficients were computed using least squares.
The projection for Alaska was used in 1985 by Alvaro F. Espinosa of the USGS to
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FiGUre 42.—Miller Oblated Stercographic projection of Europe and Alrica, showing oval lines of
constant scale. Center of projection lat. 18° N., long. 20° E.

depict earthquake information for that State. The “Modified Transverse Mercator”
projection is still being used by the USGS for most maps of Alaska.

In addition, the writer (Snyder, 1984b) used oblique Stereographics as bases
with third- to fifth-order equations, most coefficients remaining zero, to surround
maps with lines of constant scale which are nearly regular polygons or rectangles
(fig. 45). This minimizes error within a map as conventionally published.

FEATURES

The common feature linking the endless possibilities of map projections dis-
cussed in this chapter is the fact that they are perfectly conformal regardless of
the order of the complex-algebra transformation, and regardless of the initial
projection, provided it is also conformal.

Chebyshev (1856) stated that a region may be best shown conformally if the
sum of the squares of the scale errors (scale factors minus 1) over the region is a
minimum. He further declared that this results if the region is bounded by a line
of constant scale. This was proven later. Thus the Stereographic is suitable for
regions approximately circular in shape, but regions bounded by ovals, regular
polygons, or rectangles may be mapped with nearly minimum error by suitably
altering the Stereographic with the complex-algebra transformation.

If the region is irregular, such as Alaska, the region of interest may be divided
into small elements, and the coefficients may be calculated using least squares to
minimize the scale variation for the region shown. The resulting coefficients for
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w e
’ﬂ_h,«"’ ;_l..,

Fici'ne 43.—GS-50 projection, with lines of constant scale factor superimposed. All 50 States, including islands and
passages between Alaska, Hawaii, and the conterminous 48 States are shown with scale lactors ranging only from
1.02 to 0.98.

FIGURE 44.—Modified-Stereographic Conformal projection of Alaska, with lines of constant scale superimposed. Scale
factors for Alaska range from 0.997 to 1.003, one-fourth the range for a corresponding conic projection.
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1200 — g - S . Coagh

FisUuRre 45.—Modified-Stereographic Conformal projection of 48 United States, bounded by a near-
rectangle of constant scale. Three lines of constant scale are superimposed. Region bounded by
near-rectangle has minimum error.

the selected projections are given below, but the formulas for least-squares sum-
mation are not included here because they are lengthy and are only needed to
devise new projections. For them the reader may refer to Snyder (1984a, 1984b,
1985a).

The reduction of scale variation by using this complex-algebra transformation
makes the ellipsoiclal form even more important. This form is also simpler in these
cases than for the Transverse Mercator and some other projections, because the
lines of true scale normally do not follow a selected meridian, parallel, or other
easily identifiable line in any case. Therefore, use of the conformal latitude in
place of the geographic latitude is sufficient for the ellipsoidal form. This merely
slightly shifts the lines of constant scale from one set of arbitrary locations to
another. The coefficients have somewhat different values, however.

The meridians and parallels of the Modified-Stereographic projections are gen-
erally curved. and there is usually no symmetry about any point or line. There are
limitations to these transformations. Most of them can only be used within a
limited range, depending on the number and values of coefficients. As the dis-
tance from the projection center increases, the meridians, parallels, and shore-
lines begin to exhibit loops, overlapping, and other undesirable curves. A world
map using the GS50 (50-State) projection is almost illegible, with meridians and
parallels intertwined like wild vines.

Within the intended range of the map, the Modified-Stereographic projections
can reduce the range of scale variation considerably when compared with stand-
ard conformal projections. The tenth-order complex-algebra modification used
for the 50-State projection has a scale range of only +2 percent (or 4 percent
overall) for all 50 States placed in their relative geographical positions, including
all islands, adjacent waters, water channels connecting Alaska, Hawaii, and the
other 48 States, and nearby Canada and Mexico (fig. 43). A Lambert Conformal
Conic projection previously used with standard parallels 37° and 65° N. to show the
50 States has a scale range of +12 to —3 percent (or 15 percent overall). The
sixth-order modification for the Alaska map, called the Modified-Stereographic
Conformal projection, has a range of +0.3 percent (or 0.6 percent overall) for
Alaska itself, while a Lambert Conformal Conic with standard parallels 55° and 65°
N. ranges from +2.0 to —0.4 percent, or 2.4 percent overall.
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The bounding of regions by ovals, near-regular polygons, or near-rectangles of
constant scale results in improvement of scale variation by amounts depending on
the size and shape of the boundary. The improvement in mean scale error is about
15 to 20 percent using a near-square instead of the circle of the base Stereo-
graphic projection. Using a Modified-Stereographic bounded by a near-rectangle
instead of an oblique Mercator projection provides a mean improvement of up to
30 percent in some cases, but only 5 to 10 percent in cases involving a long narrow
region. For fig. 45, the range of scale is *1.1 percent (or 2.2 percent overall)
within the 48 States, while the Lambert Conformal Conic normally used has a
range of +2.4 to —0.6 percent (or 3.0 percent overall).

The improvement for the region in question is made at the expense of scale
preservation outside the region. The regular conic projections maintain the same
scale range around the entire world between the same latitude limits, even though
most of that region is not shown on the regional maps described above.

FORMULAS FOR THE SPHERE.

The Modified-Stereographic conformal projections which have a scale range of
more than 5 percent, such as regions bounded by rectangles 80° by 40° in spherical
degrees, may satisfactorily be computed for the sphere instead of the ellipsoid. As
stated above. development of coefficients is not shown here. For the calculation of
final rectangular coordinates, given R, &, A, 4, through A4,,, B, through B,,,
&, and A, and to find v and y (see p. 344 for numerical examples):

k’ =2/[1 + sin &, sin & + cos ¢,y cos b cos (A —Ay)] (26-1)

£ =k’ cos & sin (A=) (26-2)

y' =k’ [cos &, sin & — sin &, cos b cos (A—X\y)] (26—-3)

r+iy=R I A+ iB) ' + iy (26-4)

k = | S @A +B) @iy |k (26-5)
=1

where k' is the scale factor on the base Stereographic map, (', y') are rectangu-
lar coordinates for a globe of radius 1 on the base map, (r, y) are rectangular
coordinates on the final map, & is the scale factor on the final map. (b,, Ay) are the
central latitude and longitude of the projection, (b, A) are the latitude and longi-
tude of the point to be plotted, R is the radius of the sphere, (A;, B)) are the
coefficients for j=1 to j=n, the order of the equation, and i* is ~1. Equations
(26—1) through (26-3) are similar to the forward equations listed under the
regular Stereographic projection, but there are slight differences. The formulas
for this projection as published in Snyder (1984a, 1985a) introduce R (and a for the
ellipsoid) at the wrong points, although answers are correct.

For the practical computation of equations (26—4) and (26-5), Knuth's (1969)
algorithm is recommended instead of them. Let

roo= 2008 = (0P + gy = Oigr = A+ iBriay = gy
by = gy-1i¢c1 = mgyidy = (=1 g, 1 a = bj—l +oraj-y;
bi = Gm-j = 8"t ¢j = djey + reimiidj = N=lg-; = s'cio1 (26-6)

After jis given the value of successive integers from 2 to m for a; and b;and 2 to
(m—1) for c; and d;, then ’ ’
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r o+ .iy = R[(x" +iy) ap + byl (26—-1)
Faz +F, = ('17'+'-'?/')‘Cm-1 + dp—1 (26-8)
k = (F 2+ F 22 k' (26-9)

For the Modified-Stereographic Conformal projections with ovals, near-regular
polygons, or near-rectangles as bounding lines of constant scale, since there are
only two or three non-zero coefficients, plus a possible rotation, equations (26—4)
and (26—5) may be simplified to avoid a need for the use of i or Knuth’s algorithm.
The above formulas are more general, however, once they are programmed. For
the simplified forms, the reader is referred to Miller (1953) and Snyder (1984b). If
k is not being calculated in the above formulas, the four equations of (26—6) which
include ¢ or d, as well as (26—8) and (26—9), may be omitted. For constants, see
table 33.

For inverse equations, given R, &,, Ay, A, through A,,, B, through B,,,, x, and
¥y, to find ¢ and A, first a Newton-Raphson iteration may be used as follows to find
@y

A +iy) = = [+ iy W Fy+iFy) (26—10)
where
f@+iy) = (A +IB)Q' +iy) —(x+iy)R (26—-11)
=1 h
Fy + iF, = S j(A;+iB) (' +iy)r (26-12)

i=1

and the first trial value of ' is (/R) and of y’ is (3/R). The Knuth algorithm is
equally suitable here, using all of the equations in (26—6), assigning j values
which are described following those equations, and replacing equations (26—11)
and (26—12) with (26— 13) and (26—38), respectively.

fle +iy') = (¢ +iyda, + by, — (r+iy)R (26—13)
After the trial values of (@', y’) are adjusted with (26—10) until the change in

each is negligible (3—4 iterations are normally enough), the final («’, y') is con-
verted to (b, \) without iteration as follows:

p o=lr)? + ()] (26~14)
¢ =2 arctan (p/2) (26-15)
¢ = aresin [cos ¢ sin &, + (¥’ sin ¢ cos ¢/p)] (26—-16)
N = Ao + arctan [x’ sin ¢/(p cos &, cos c—y' sin & sin¢)] (26—-17)

If p =0, equations (26— 16) and (26—17) are indeterminate, but ¢ =d; and A =\,.

FORMULAS FOR THE ELLIPSOID

For higher precision maps taking greater advantage of the reduced scale varia-
tion available with Modified-Stereographic Conformal projections, the ellipsoidal
formulas should be used. Given a, e, ¢, A, 4, through A,,, B, through By, &,
and A, to find x and y (special numerical examples are not given, but examples of
the ellipsoidal Stereographic, p. 313, and of the spherical Modified-Stereographic
p. 344, are sufficiently similar):
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TABLE 33.—Modified-Stereographic Conformal projections: Coefficients for specific forms

Taking the Earth as a sphere:

Miller Oblated Stereographic projection for Europe and Africa (fig. 42):
R = 6,371,221 m at full scale

m=3

¢, = 18°N. lat.

Ao = 18°E. long. as constructed (20° in Miller (1953))
A, = 0.924500

A, = 0.019430

Ay, By, By, B3 =0
Lee Oblated Stereographic projection for the Pacific Ocean:

R = Not stated
m =3
&, = 10°S. lat.

No = 165°W. long.

A, = 0.721316

Ay = —0.00881625

By = -0.00617325
As. By, B, =0

GS50 projection for the 50 States (fig. 43; ellipsoidal formulas and constants should

normally be used):

R = 6,370,997 m at full scale

m =10

&; = 45°N. lat.

Ao = 120°W. long.

Ay = 0.9842990 B, =0

A, = 0.0211642 B, = 0.0037608
A, = —0.1036018 By = —0.0575102
Ay = —0.0329095 By, = -0.0320119
A; = 0.0499471 B, = 0.1223335
As = 0.0260460 B, = 0.0899805
A; = 0.0007388 B; = —0.1435792
Ap = 0.0075848 By = —0.1334108
Ay = —-0.0216473 By = 0.0776645
Ay = —0.0225161 By = 0.0853673

Modified-Stereographic Conformal projection for Alaska (fig. 44; ellipsoidal formulas
and constants should normally be used):

R =6,370,997 m at full scale

m =6

$; = 64°N. lat.

Ao = 152°W. long.

A = 0.9972523 B, =0

A, = 0.0052513 By = —0.0041175

Ay = 0.0074606 By = 0.0048125

A, = —0.0153783 B, = -0.1968253

As = 0.0636871 B; = —0.1408027

Az = 0.3660976 B; = —0.2937382
Modified-Stereographic Conformal projection for United States bounded by near-rectangle

(fig. 45):

R =6,370,997 m at full scale

m =5

&, = 39°N. lat.

Ao = 96°W. long.

A, = 0.98879

A; = -0.050909

As = 0.085528

Ay, Ay, By, Ba, By, By, B; = 0
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TARLE 33.—Modified-Stereographic Conformal projections: Cocefficients for specific forms—Continued

Taking the Earth as an ellipsoid:

GS50 projection for the 50 States:

a = 6,378,206.4 m at full scale (Clarke 1866 ellipsoid)
e = 0.00676866

m =10

& = 45°N. lat.

Ao = 120°W long.

A; = 0.9827497 B, =0

A4, = 0.0210669 By = 0.0053804
Ay = —0.1031415 B; = -0.0571664
Ay = —-0.0323337 B, = —0.0322847
A; = 0.0502303 By = 0.1211983
A; = 0.0251806 Bs = 0.0895678
A; = -0.0012315 B; = -0.1416121
Ay = 0.0072202 By = —0.1317091
Aq = —-0.0194029 By = 0.0759677
A = —0.0210072 Biw = 0.0834037

=
5
2
=
o
=
&%

tereographic Conformal projection for Alaska:

a = 6,378,206.4 m at full scale (Clarke 1866 ellipsoid)

* = 0.00676866

m =6

&) = 64°N. lat.

Ao = 152°W long.

A, = 0.9945303 B =0

A, = 0.0052083 B, = -0.0027404

Ay = 0.0072721 By = 0.0048181

Ay = ~-0.0151089 B, = —0.1932526

A; = 0.0642675 Bs = -0.1381226

Ay = 0.3582802 By = —0.2884586
x =2 arctan tan (m/d + &/2)(1—¢ sin d)(1 +e sin b)le 2 — w2 3-1D
m = cos d/(1—-¢” sin” $)'* (14-15)
s =21 + =in x sin x + cos x; cos x cos (A=Ay)] (26—18)
k' = s cos x/m (26—19)
x =5 cos x s (A—=N) (26-20)
¢ = s lcos x, sin x — sin x; cos x cos (A—Ay)) (26-21)

where x, is found as x (the conformal latitude) from equation (3—1) by substitut-
ing &, for . The (x', ¥’) thus found are converted to (x, y) with unchanged
equations (26—4) and (26—5). or (26—6) through (26—9) as listed under spherical
formulas with accompanying explanations, except that R in (26—4) or (26-7) is
replaced with a, the semimajor axis of the ellipsoid of eccentricity e, and the
constants used must be those for the ellipsoidal projection.

For inverse equations, given a, e, &y, ho. A, through A,,, B, through B,,, », and
y. to find & and A, the Newton-Raphson iteration ol spherical equations (26-10)
through (26— 13) is used unchanged to find (', y°) except that R is replaced with
a, and ellipsoidal constants must be used. After convergence, the final (x', y')is
converted to (b, ) without iteration. Equations (26—14), (26— 15), and (3—1) are
used to calculate p, ¢, and x, as before.

Then.
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x = aresin [cos ¢ sin x; + (¥’ sin ¢ cos x,/p)] (26-—22)
¢ =2 arctan [tan (/4 + x/2)[(1 + ¢ sin $)/(1—e¢ sin $)]e/2] — w/2 (3—4)
A =\, + arctan [x' sin ¢/(p cos x; cos ¢ — ¥’ sin x; sin ¢)] (26—-23)

If p=0, equations (26—22) and (26—23) are indeterminate, but x = x, and A = A,
Equation (3—4), which should not use the ATANZ function or equivalent, involves
iteration by successive substitution, using x as the first trial ¢ on the right side of
the equation, calculating & on the left, using the new value of ¢ on the right side,
and so forth, until the change in ¢ is negligible. Tables 34 and 35 list representa-
tive rectangular coordinates for the ellipsoidal forms of the 50-State and Alaska
projections, to be used in the above formulas.

211



212

MAP PROJECTIONS—A WORKING MANUAL

TABLE 34.—GS50 projection for 50 States: Rectangular coordinates for Clarke 1866 ellipsoid

[ enordinute in parentheses below x coordinate; k (scale factor) in italics. Equutorial radius of ellipzoid.

a = 1 unit; cecentricity is bagsed on Clarke 1866 ellipsoid. Origin 45°N, lut., 120°W, long., ¥ axis north from origin )
Longitude
Latitude 1657 180° ~165° ~150° —135° —120°
75° —0.29450 —-0.26954 —0.22462 —0.16629 —0.09888 -0.02577
(0.68122) (0.62252) (0.57777) (0.54832) (0.53514) (0.53917)
0.969;0 0.93350 0.95680 0.98600 1.04351 1.11926
60 —-0.56708 -0.47652 —0.37432 —0.25945 —0.13450 -0.00285
(0.55579) (0.44931) (0.36467) (0.30448) (0.26964) (0.26061)
1.11056 1.04320 0.99720 0.98684 0.99638 1.01989
45 —0.78438 -0.65970 —0.51358 ~0.35313 —0.18060 0.00000
(0.40816) (0.25882) (0.14804) (0.06723) (0.01707) (0.00000)
1.10999 1.01071 0.97599 0.96761 0.97461 0.98441
30 —0.99437 —0.82970 —0.64556 —0.44699 —-0.23176 -0.00042
(0.18093) (0.05909) (—0.06996) (—0.16831) (—0.23587) (—0.26080)
0.925.37 0.99589 0.98110 0.97955 1.01526 1.02960
15 ~1.26654 —0.99879 —0.77655 —0.54614 —0.30348 0.00686
(0.37724) (—0.17525) (—0.29355) (—0.40445) (-0.50718) (—0.54997)
3.-35283 1.26758 1.02533 0.96750 1.17269 1.24078
Longitude
Latitude - 105" —H0° —75° —60° —45°
75° 0.05019 0.12669 0.20199 0.27474 0.34149
(0.56133) (0.60290) (0.66601) (0.75568) (0.88349)
1.2187% 1.35483 1.55468 1.87521 242649
50 0.13189 0.26642 0.39828 0.52663 0.66111
(0.27713) (0.31778) (0.37908) (0.45182) (0.50581)
1.05301 1.0912} 1.12313 1.11592 1.17453
45 0.18215 0.35975 0.52792 0.68068 0.78758
(0.01665) (0.06457) (0.14091) (0.24688) (0.42634)
0.99055 .99558 0.99806 1.02418 1.445787
30 0.22878 0.44683 0.65324 0.83776 1.04409
(—0.23806) (—0.17878) (—0.08678) (0.03834) (0.00223)
1.00259 0.99481 1.0038} 0.87806 2.72764
15 0.28360 0.53662 0.76638 1.12680 0.56142
(—0.49621) (—0.43117) (-0.31713) (0.21682) (1.25008)
1.00240 1.10194 0.84755 2.88781 16.99865

TAaBLE 35.—Modified-Stereographic Conformal projection for Alaska: Rectangular coordinates for Clarke 1866 ellipsoid

u conndinate in parentheses beinw s concdinate: & tseale factors in italies. Equatorial radius of ellipsoid, 4

¥ axis north frem origin |

= 1 unit; eccentricity is based on Clarke 1866 ellipsoid. Origin: 647 Lat., -~152° Long.,

Longitude
Latitude 1707 180" ~170° —160° - 150" —140° —-130°

75° -0.16211 —-0.12311 —0.08081 -0.03641 0.00892 0.05402 0.09772
(0.24589) (0.22161) (0.20445) (0.19469) (0.19248) (0.19786) (0.21074)

1.01917 1.01147 1.00600 1.00306 1.00264 1.00459 1.00866

70 -0.21520 -0.16271 —0.10647 —0.04782 0.01192 0.07140 0.12928
(0.17360) (0.14228) (0.12028) (0.10779) (0.10494) (0.11178) (0.12827)

1.0039 1.01497 1.00535 1.00062 0.99993 1.0030} 1.01023

65 -0.26675 —-0.20094 —0.13124 —0.05888 0.01475 0.08813 0.15975
(0.09941) (0.06222) (0.03605) (0.02112) (0.01767) (0.02578) (0.04536)

1.03421 1.01.364 1.00273 0.99805 0.99768 1.00108 1.00982

60 -0.31591 —-0.23765 -0.15521 —0.06968 -0.01744 0.10427 0.18895
(0.02389) (—0.01813) (—0.04808) (—0.06536) (—0.06946) (-0.06013) (—0.03772)

1.02672 1.00804 0.99991 0.99758 0.99834 1.00020 1.00527

55 -0.36252 -0.27315 —-0.17873 -0.08047 0.01999 0.12022 0.21725
(—0.05185) (—0.09835) (-0.13210) (—-0.15191) (—0.15683) (-0.14611) (—0.12045)

1.00925 1.00166 0.99931 1.00127 1.00536 1.00467 0.99738

50 -0.40740 —0.30816 —0.20222 -0.09163 0.02232 0.13669 0.24590
(—0.12654) (—0.17828) (-0.21616) (—0.23888) (—0.24516) (—0.23284) (—0.20230)

0.98940 1.00073 1.00245 1.00955 1.02260 1.02247 0.99239




SPACE MAP PROJECTIONS

SPACE MAP PROJECTIONS

One of the most recent developments in map projections has been that involving
a time factor, relating a mapping satellite revolving in an orbit about a rotating
Earth. With the advent of automated continuous mapping in the near future, the
static projections previously available are not sufficient to provide the accuracy
merited by the imagery, without frequent readjustment of projection parameters
and discontinuity at each adjustment. Projections appropriate for such satellite
mapping are much more complicated mathematically, but, once derived, can be
handled by computer.

Several such space map projections have been conceived, and all but one have
been mathematically developed. The Space Oblique Mercator projection, suitable
for mapping imagery from Landsat and other vertically scanning satellites, is
described below, and is followed by a discussion of Satellite-Tracking projections.
The Space Oblique Conformal Conic is a still more complex projection, currently
only in conception, but for which mathematical development will be required if
satellite side-looking imagery has been developed to an extent sufficient to en-
courage its use.
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27. SPACE OBLIQUE MERCATOR PROJECTION

SUMMARY

e Modified cylindrical projection with map swrface defined by satellite orbit.

Designed especially for continuous mapping of satellite imagery.

Basically conformal, especially in region of satellite scanning.

o Groundtrack of satellite, a curved line on the globe, iz shown as a curved line
on the map and is continuously true to scale as orbiting continues.

o All meridians and parallels are curved lines, except meridian at each polar
approach.

* Recommended only for a relatively narrow band along the groundtrack.

e Developed 1973—79 by Colvocoresses, Snyder, and Junkins.

IHISTORY

The launching of an Earth-sensing satellite by the National Aeronautics and
Space Administration in 1972 led to a new era of mapping on a continuous basis
from space. Thix satellite, first called ERTS-1 and renamed Landsat 1 in 1975,
was followed by two others, all of which circled the Earth in a nearly circular
orbit inclined about 99° to the Equator and scanning a swath about 185 km (offi-
cially 100 nautical miles) wide from an altitude of about 919 km. The fourth and
fifth Landsat satellites involved circular orbits inclined about 98° and scanning
from an altitude ol about 705 km.

Continuous mapping of thix band required a new map projection. Although
conformal mapping was desired, the normal choice, the Oblique Mercator projec-
tion, is unsatisfactory for two reasons. First, the Earth is rotating at the same
time the satellite is moving in an orbit which lies in a plane almost at a right angle
to the plane of the Equator, with the double-motion effect producing a curved
groundtrack, rather than one formed by the intersection of the Earth's surface
with a plane passing through the center of the Earth. Second, the only available
Oblique Mercator projections for the ellipsoid are for limited coverage near the
chosen central point.

What was needed was a map projection on which the groundtrack remained
true-to-scale throughout its course. This course did not, in the case of Landsat
1. 2, or 3, return to the same point f[or 251 revolutions. (For Landsat 4 and 5, the
eyele is 233 revolutions.) It was also felt necessary that conformality be closely
maintained within the range of the swath mapped by the satellite.

Alden P. Colvocoresses of the Geological Survey was the first to realize not
only that such a projection was needed, but also that it was mathematically feasi-
ble. He defined it geometrically (Colvocoresses, 1974) and immediately began to
appeal for the development of formulas. The following formulas resulted from the
writer's response to Colvocoresses’ appeal made at a geodetic conference at The
Ohio State University in 1976. While the formulas were devived (1977-179) for
Landsat, they are applicable to any satellite orbiting the Earth in a circular or
elliptical orbit and at any inclination. Less complete formulas were also developed
in 1977 by John L. Junkins, then of the University of Virginia. The following
formulas are limited to nearly cireular orbits, A complete derivation for orbits
of any ellipticity is given by Snyder (1981b) and another summary by Snyder
(1978b).

FEATURES AND USAGE

The Space Oblique Mercator (SOM) projection visually differs from the Obl.i(.]ue
Mercator projection in that the central line (the groundtrack ol the orbiting
satellite) is slightly curved, rather than straight. For Landsat, this groundtrack
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appears as a nearly sinusoidal curve crossing the X axis at an angle of aboul 8°.
The scanlines, perpendicular to the orbit in space, are slightly skewed with
respect to the perpendicular to the groundtrack when plotted on the sphere or
ellipsoid. Due to Earth rotation. the scanlines on the Earth (or map) intersect the
groundtrack at about 86° near the Equator, but at 90° when the groundtrack makes
its closest approach to either pole. With the curved groundtrack, the scanlines
generally are skewed with respect to the X and Y axes, inclined about 4° to
